NASA Technical Memorandum 88288

Manual for GetData Version 3.1
A FORTRAN Utility Program for Time History Dat:

Richard E. Maine

October 1987

NASA

nnnnnnnnnnnnnnnnn

NASA Technical Memorandum 88288

Manual for GetData Version 3.1
A FORTRAN Utility Program for Time History Date

Richard E. Maine
Ames Research Center, Dryden Flight Research Facility, Edwards, California

1987

NASAN

National Aeronautics and
Space Administration

Ames Research Center

Contents

SUMMARY 1
1 Introduction 1
2 User’s Guide to GetData 2
2.1 Running GetData o o i e 2
2.2 Entering GetData Commands o o 3
23 HelpCommandt 4
24 BasicOperation. i i e 5
2.5 Controlling the Output Frame Times 7
2.6 Merging and Splicing Input Files 9
2.7 Applying Time Skews 11
2.8 Imterpolatingin Time 13
2.9 Selecting and Defining Signals L oo 14
2.10 Showing Signal Definitions e 17
2.11 Automating Command Sequences 17
2.12 Running System Commands From GetData 19
2.13 Specifying File Formats 19

3 Programmer’s Guide to GetData 21
3.1 Calculated Function Modules oL 21
3.2 Filter Module 22
3.3 File Interface Modules L 23
3.4 File Formats e 25
3.5 System Dependencies 27
3.6 Specific Conversions it e e e e e e 31
3.6.1 VAX-VMS Conversion 31

3.6.2 UNIX Conversion« v i v v i ittt e e e e e e e e e e 32
Appendix A—Help Files 34
Al ProgramHelp File o 34
A2 Command Help Files. e 36
A21 Copy Command neeieinine, 36

A22 DoCommand. i e 38

A23 HelpCommand ittt 40

A24 Method Command e 41

A25 QuitCommand it iiee 43

A26 Read Command 44

A27 Show Command 46

A.2.8 Signals Command 47

A2.9 Skew Command 51

A.2.10 Sys Command 53

A2.11 Write Command oo 54

A3 Topic Help Files 56
A.3.1 Calculations 56

A3.2 CPUTime o e 59

A.3.3 FileInterFace e 63

A4

Ab

A.6

A7

A8

A.34 VEISION . o « v o o e e e e e e e e e e e e e e e e e e e
Calculated Function Subroutine Help Files
A.4.1 Subroutine AllocateCFz« . o o o i oo e
A.4.2 Subroutine ActivateCFT« o o oo e
A.4.3 Subroutine DOCFT o o v i v i e e
Filter Subroutine Help Files oo i o
A.5.1 Subroutine AllocateFilt e
A.5.2 Subroutine ActivateFilt
A.5.3 Subroutine ReMapFilto
A.5.4 Subroutine DoFilt« o e
File Read Subroutine Help Files oo
A.6.1 Function OpenR oo
A.6.2 Subroutine RSIgs« o o o i i
A.6.3 Subroutine SigsR o .o e e
A.6.4 Subroutine CRansR« « ot o i i e e e e e
A.6.5 Subroutine REWR« « o i e e e e e
A.6.6 Function FSeek o o o i i e e
A.6.7 Function FRead« o i i i i i e it e e e e e e e e
A.6.8 Subroutine CloseR o o v i i i e e e e e
File Write Subroutine Help Files e e e e e e e
A.7.1 Function OpenW o e
A.7.2 Subroutine FWrite o v o v it e e e e e e
A.7.3 Subroutine CloseW o i i i e e e e e
File Format Help Files oo i
A81 ASCIITFOrmMat . . . v v v v e e e e it e e e e et e e e e e
A.8.2 Compressed 2 Format
A83 List TFOrMAt v o v i e e e e et e e e e e e e e e e e e e e
A8.4 Uncompressed 1 Formato
A.8.5 Uncompressed 2 Formato i

Appendix B—Sample Calculation Routines

B.1

B.2

Sample Calculated Function Moduleo
B.1.1 Subroutine AllocateCF1« c i i i i i e e
B.1.2 Subroutine ActivateCF1 o o e e
B.1.3 Subroutine DoCFI« « o i it e e e e
Sample Filter Module
B.2.1 Subroutine AllocateFilt. e
B.2.2 Subroutine ActivateFilt e e
B.2.3 Subroutine ReMapFilto
B.2.4 Subroutine DoFilt 0 e e e
B.2.5 Subroutine Low3F e
B.2.6 Subroutine NotchF« o o o i i i e e

References

Index to User’s and Programmer’s Guides

SUMMARY

This report documents version 3.1 of the GetData computer program. GetData is a utility program
for manipulating files of time history data, that is, data giving the values of parameters as functions
of time. The most fundamental capability of GetData is extracting selected signals and time segments
from an input file and writing the selected data to an output file. Other capabilities include converting
file formats, merging data from several input files, time skewing, interpolating to common output times,
and generating calculated output signals as functions of the input signals.

This report also documents the interface standards for the subroutines used by GetData to read
and write the time history files. All interface to the data files is through these subroutines, keeping the
main body of GetData independent of the precise details of the file formats. Different file formats can
be supported by changes restricted to these subroutines. Other computer programs conforming to the
interface standards can call the same subroutines to read and write files in compatible formats.

1 Introduction

Aircraft flight test and research projects often generate large amounts of computer data. A single flight
of a complex vehicle typically generates several hundred megabytes of data. A single flight project may
involve several hundred flights, and a dozen active flight projects may be in progress at a major flight
test or research site. This gives a total volume on the order of a terabyte of data to be managed.

The overwhelming majority of these data can be classified as time history data, that is, data
showing the values of various parameters (signals) as functions of time. The parameter values are
usually sampled and recorded at regular time intervals. Different parameters on the same vehicle
can have different sample rates, typically ranging between 1 and 1000 samples/sec. In some cases,
parameters are sampled at irregular time intervals; such asynchronous sampling is relatively rare (but
not unheard of) in current data systems.

The GetData program is a utility for performing several functions fundamental to files of time
history data. The most fundamental capability of GetData is extracting selected signals and time
segments from an input file and writing the selected data to an output file. Other capabilities include
converting file formats, merging data from several input files, time skewing, interpolating to common
output times, and generating calculated output signals as functions of the input signals.

Time history data are used, manipulated, and exchanged among dozens of computer programs.
Until recently each program was typically written to use a specific file format for time history data.
There was only minimal coordination of these file formats.

This proliferation of incompatible file formats necessitated numerous program patches to read and
write different formats; conversion programs were also written to translate file formats. Although each
patch or conversion program required relatively little effort, the large number of them and the large
volume of data involved meant that the total effort expended was substantial.

An obvious approach to dealing with this problem is to minimize the number of incompatible
formats used, adopting a small number of formats as supported standards at a site. This approach can
substantially reduce, but cannot eliminate, the problem. The volume of existing files is too large for it
to be practical to reformat them all. We do not always have the option to specify the file formats used
by commercial programs or received from other sites.

The GetData program addresses this problem by modularization. All code that

is dependent on
t -r 1

for the interface between these file access subroutines and the rest of the program. This allows the
same subroutines to be used in any program conforming to the interface standard. Support of a new
file format then requires only that a single version of the access routines be written for that format.
This requires relinking each pertinent program with the new access routines but requires no source
code changes outside the access routines.

We have recommended that most programs adopt the interface standards of the file access routines.
This is not practical in all cases, notably for those programs where source code is not distributed
or where the file interface is too intricate for easy conversion. In such cases, GetData can be used
to convert data between formats used by different programs. The access routines for reading files are
completely independent of the access routines for writing files, so format conversion can be accomplished
by running GetData with read routines for one format and write routines for another.

This document is a manual for the GetData program, version 3.1. The document also includes
specification of the interface standards for the file access routines and documentation of a specific set
of access routines supporting several generally useful formats.

2 User’s Guide to GetData

This section describes how to use the GetData program. Most of the description applies to any
installation of GetData, but a few of the “niceties” arc system dependent and may not be implemented
in all installations. All such system-dependent features are mentioned in the text and are referenced
under “system dependence” in the index. The manual will describe the system-dependent features as
they are implemented on the ELXSI computer (ELXSI, San Jose, California, ref. 1).

The manual documents all limitations that arise from fixed array dimensions in the code (refer-
enced under “limitations” in the index). All array limits were chosen liberally to accommodate most
applications. The limits can be changed easily, in most cases by changing a single parameter statement
in the code.

GetData is designed to be highly crash resistant. When it encounters an error, it terminates
the failed command, prints an error message, and prompts for the next command. Such mundane
errors as exceeding dimension limits or giving names of nonexistent files or signals are all detected.
The only known internal program crashes involve data values too large for single-precision floating-
point variables.

2.1 Running GetData

GetData is designed as an interactive program, that is, it reads commands from the user’s terminal.
The method of starting an interactive job is system dependent. On the ELXSI, you type

GetData
The program will then display something like
getData program

time history data selection
Richard Maine - NASA Dryden

wwamndian 2 1 1 11 Qant RA

this run date: 21-0ct-86 time: 14:59:55
Help is available
getData:

The run date and time will be different, as might version number and date. The getData: prompt
indicates that GetData is waiting for a command.

Some GetData runs can be slow or might need to wait for events such as tape mounting. The
program can be run in a batch mode if desired. To run GetData in a batch mode, use an editor to
prepare an input file containing all the GetData commands you would type to do the run interactively.
Then specify this file as the system input file when you batch the GetData program. The methods
of running a batch job and specifying its system input file are system dependent. On the ELXSI, the
command to batch the GetData program with an input file called commandFile would be

batch ’commandFile> GetData’

All output that would have gone to the terminal in an interactive job will go to a system-dependent
batch log file in a batch job.

The remainder of this manual is written as though GetData were being run interactively. It is
implicit that the discussion also applies to batch runs if the references to the terminal are appropriately
interpreted as applying to the system input file or batch log file.

2.2 Entering GetData Commands

Whenever you see the getData: prompt, the program is waiting for a command. This section describes
general principles of command entry that apply to all GetData commands. The following scctions
describe the details of specific commands.

Input lines are limited to 256 characters including trailing blanks; some systems may enforce
smaller limits.

If the last nonblank character in any line is an ampersand (&), it indicates that the command will be
continued on the following input line. GetData will prompt with more: for you to enter the continuation
line. Continuation lines can be further continued, subject only to a limit of 4096 characters in the
concatenated command. Trailing blanks on the input lines are removed before concatenating the lines
and therefore do not count towards this limit. The ampersand continuation characters are converted
to blanks in the concatenated command; therefore, line breaks must occur at places where blanks
are allowed. Concatenation of continuation lines occurs before any other processing of a command.
Therefore, errors in a command will not be diagnosed until after the last line of the command, even if
the error occurred on the first line.

If the first two characters of a command (except for possible leading blanks) are dashes (--). that
command is considered to be a comment and is ignored. A completely blank command is also allowed
as a comment. Comments are most useful in do files (section 2.11) and batch job inputs but are also
allowed interactively. Note that comments can have continuation lines, just like all other commands.

Noncomment commands are divided into fields separated by various delimiter characters. The most

1 1 e mL Ll A tin af il mmnnifa cAarnvnnnde unill

generally tell what delimiters are expected between the various fields of the commands. Whenever the
discussion does not explicitly state otherwise, a blank delimiter is expected.

GetData ignores any superfluous blanks between input fields, around delimiters, and at the begin-
ning and end of commands. You can freely use such blanks. Blanks are not allowed within input ficlds,
cxcept for a few special cases where quoted fields with embedded blanks are allowed.

The first blank-delimited field in any noncomment command specifies what command is being
invoked. The remaining fields are arguments to the command. The arguments are described in the
sections about the specific commands. Many of the commands and arguments can be specified using
abbreviations and synonyms.

There are three syntactic classes of arguments: positional, keyword, and switch. The command
read myFile fSkew=.02 +interpolate

illustrates all three classes. A positional argument simply consists of a value; the order of the positional
arguments implicitly defines which arguments go with which parameters. The myFile in the above
cxample is a positional argument; the program knows by its position as the first argument that this is
a file name. A keyword argument consists of an argument name or keyword, followed by an equal sign
delimiter, followed by a value. The fSkew=.02 in the example is a keyword argument. The value is
assigned to the parameter identified by the keyword. A switch argument consists of an argument name
preceded by a + or - sign. Switch arguments assign the boolean values true or false to their paramecters,
with a + giving the value true and a - giving the value false. Switch parameters may have antonyms;
setting the value of an antonym is equivalent to setting the original switch to the opposite value.

All GetData input is case insensitive on machines supporting upper- and lowercase. The commands
can be entered in any mix of upper- and lowercase.

2.3 Help Command

The help command provides access to an online help facility. The current implementation is highly
system dependent; it directly uses the ELXSI help facility. The help command may not be available
in all implementations of GetData and may function differently in some implementations.

The basic function of the help command is to list a help file one screen at a time. To display a help
file interactively, type help followed by the name of the help file as a positional argument. For instance,

help help

will display the help file for the help command itself. Typing help with no argument is equivalent to
typing help help.

GetData has help files on commands, subroutines, and topics. To obtain a list of all the available
help files, type one of

help commands
help subroutines
help topics

Thna rnonancac chanld lank camethine like

getData: help commands
Searching the index .
copy [cmd] -- copy data from input to output file
method [cmd] -- define interpolation methods
read [cmd] -- specify input data file(s)
show/list [cmd] -- list signal names
signals [emd] -- define signals to be written
skew [cmd] -- define input signal skews
write [cmd] -- specify output data file name
do [ecmd] ~- execute a command file
help [ecmd] -- help command
quit [emd] -- exit the program normally
sys [cmd] -- execute a system command without exiting program

getData: help subroutines
Searching the index ..

activateCF [sub] -- activate needed calculated functions
activateFilt [sub] -- activate needed filters

allocateCF [sub] -- locate signals for calculated functions
allocateFilt [sub] -- locate signals for filter

doCF [sub] -~ evaluate calculated functions

doFilt [sub] -- evaluate filters

reMapFilt [sub] -- reMap filters to compressed locations
calculations [topic] -- calculated functions in getData

getData: help topics
Searching the index ...

calculations [topic] -- calculated functions in getData
cpuTime [topic] -- cpu time estimates for getData on ELXSI
version [topic] -- version 3.1 changes to getData

Appendix 3.6.2 contains listings of all the help files in GetData.

Some details of the supplied help files are specific to the installation of the program at NASA Amnes
Research Center, Dryden Flight Research Facility (Ames-Dryden). For instance, there are references
to the installation of the program under a specific user name.

The ELXSI help command has several other features, such as keyword searches, as described in
reference 1. These features do work in GetData, but they are more useful when there are hundreds or
thousands of help files than when there are only a handful; therefore, this document will not give details.

2.4 Basic Operation
'This section describes the simplest GetData runs. It shows how to copy selected signals and times from
an input file to an output file. All other GetData runs are built on this basic structure.

Once the program is started, there are five steps required in any GetData run. These steps usec the
read, signals, write, copy, and quit commands, as in the following example command sequence:

read someFile

signals alpha, beta, p, q, T
write myFile

copy time = 10:0:0:0 - 11:0:0:0
quit

Some jobs may involve additional steps, but these five are always included.

The read command specifies the name of the input time history file. In this example, the input
file is named someFile. In response to the read command, the program opens the specified file and
determines what signals are available. The read command opens and prepares the file for subsequent
data transfer, but does not immediately read any data from the file.

The signals command specifies what signals are to be written on the output file. In this example, the
signals are selected by name. The signal names can be delimited by blanks or commas. An alternative
form of the signals command is

signals +all

which selects all the signals currently available. The natural placement of the signals command is after
the read command, which defines the list of available signals.

The write command specifies the name of the output time history file. In this example command
sequence, the output file is named myFile. In response to the write command, the program opens a
file with the specified name and defines the names of the signals on the file. The signal names must
have been defined prior to the write command and should not be subsequently changed. The write
command opens and prepares the file for subsequent data transfer, but does not immediately write any
data to the file.

The copy command copies data from the input time history file to the output time history file. The
input and output files must have previously been opened using the read and write commands. The
copy command causes the actual data transfer to occur.

The copy command also specifies the time segments to be copied. The time argument gives the
start and end times of the segment in hours, minutes, seconds, and milliseconds. If a time segment
is specified, all eight time fields must be present, whether they are zero or not. The eight time fields
can be delimited by blanks, commas, dashes, slashes, periods, or any mixture of these; no significance
is attached to the delimiter. Note, therefore, that 10:00:00.5 would represent 5 msec past 10—mnot 0.5
sec. The equal sign shown in the example is optional.

You can omit the time specification from the copy command, using just

copy

In this case, a time interval of 0 to 24 hr is assumed; this usually causes all the times from the input file
to be copied (unless the input file has times outside this range, which is not common but occasionally
results from special conventions). The copy command will skip any requested times not present on the
input file.

You can have multiple copy commands to specify multiple time intervals. For instance, the com-
mand sequence

read someFile

signals +all

write myFile

copy time = 10:0:0:0 - 10:0:5:0
copy time = 10:1:0:0 - 10:1:5:0
copy time = 10:2:0:0 - 10:2:5:0
quit

copies all the data from three 5-sec time intervals of someFile to myFile. When multiple time intervals
are requested like this, the intervals should be nonoverlapping and in time sequential order. Otherwise
the frames on the output file may be out of time sequential order, which causes problems with many
programs (including GetData). GetData will print a warning message if this occurs.

The quit command closes all files and exits the GetData program. This is the normal way of
terminating a GetData run. A system-dependent end-of-file from the terminal will also be interpreted
as an implicit quit command, but the explicit quit command is less confusing.

2.5 Controlling the Output Frame Times

All time history data files manipulated by GetData are organized into frames, also called records. Each
frame contains a time value, called the time tag or frame time, plus values of the signals at or near
that time. For the moment, we assume that the signal values are exactly at the frame time; section 2.7
discusses the more complex situation.

In the simple examples of section 2.4, the output frame times were exactly the same as the input
frame times in the requested time interval. This is the simplest means of defining the output frame
times, but it is not adequate for all applications. GetData provides two methods of defining the output
frame times, controlled by the thin and dt parameters in the copy command.

The first method is based on thinning the input frame times. It sets the first output frame time in
an interval to equal the first input frame time in the interval; thereafter, the output frame times are
equal to every thinth input frame time until the end of the requested time interval. You select this
method by specifying the value of thin as a keyword argument to the copy command. For example,

copy time=10:0:0:0-11:0:0:0 thin=2

means to make output frame times for every second input frame time between 10 and 11 o’clock.
Negative or zero values of thin are illegal. The value 1 makes an output frame time for every input
frame time in the interval.

The thinning method makes no attempt to generate a constant sample rate in the output; it operates
strictly and simply by thinning the input. For instance, if the input frame times were at 0,1,2,3,4,
6,7,8,9, 10, ... msec after the interval start time, then thinning by 2 will produce output frames at
0,2,4,7,9, ... msec after the interval start time; the algorithm makes no attempt to compensate for
the “missing” frame at 5 msec after the start.

The second method of defining the output frame times is to specify a constant time increment or
sample interval between output frames. You select this method by specifying a nonzero value of the
time increment dt as a keyword argument to the copy command. For example,

copv time=10:0:0:0-11:0:0:0 dt=.002

means to make output frames spaced exactly (to floating-point precision) 2 msec apart between 10 and
11 o’clock. The input frames can be at any sample rate or can even be sampled at irregular times.
Negative values of dt are illegal; a zero value disables this method and is equivalent to specifying

thin=1.

The implementation of the dt parameter makes one exception to the principle of constant output
sample rate. If there is no input frame within 1 sec after a proposed output frame time, the output
frames will be omitted until after the next available input frame time. Thus the program will skip
large time dropouts in the input but interpolate through small ones. A message will be printed so that
you will be aware of the omission. Signal skews (section 2.7) are not considered in this algorithm, so it
may have problems if all the signals on a file are skewed by a second or more (but that is not the best
way to specify uniform large skews anyway). The 1-sec criterion separating small dropouts from large
ones is currently hardwired into the code, thus the program will not work well with input data rates
less than 1 sample/sec.

This feature is intended to make it easy to work with files having several disjoint time segments of
data. A command like

copy dt=.02

will make output frames at 50 samples/sec during the time segments present on the input file but will
not waste huge amounts of file space filling out 24 hr of interpolated data at this rate. Without the
special treatment for large time dropouts, you would have to determine what time intervals were on
the input file and make a separate copy command for each interval to achieve this result.

The distinctions between the effects of the thin and dt parameters are critically important for
some applications. The dt parameter gives a constant output sample rate, which is required-for some
analysis techniques. However, the output frame times resulting from the dt parameter will generally
lie between input frame times, requiring some form of interpolation of the data (see section 2.8). The
thin parameter avoids interpolation (unless you have time skews or multiple input files) but does not
guarantee a constant output sample rate unless the input sample rate is constant. The thin parameter
often uses substantially less computer time.

The keyword parameter nTimes can be used in conjunction with either the thin or the dt parame-
ters. The nTimes parameter specifies a maximum number of output frames that will be written. It is
most useful for debugging, when you want to look at only the first few frames of output. For instance,
the command sequence

read inFile
signals +all
write outFile
copy nTimes=5
quit

copies the first five frames of inFile to outFile without requiring you to specify the times of those frames.

GetData expects its input files to be in time sequential order. Furthermore, there is a finite tolerance
of 0.1 msec used in several places to avoid roundoff problems. GetData prints a warning message
whenever the input times are out of order or spaced less than 0.1 msec apart. Such input frames
may cause some of the input data to be discarded. One consequence of the 0.1-msec tolerance is that
GetData does not work well with sample rates greater than about 10,000 samples/sec. This tolerance
rannnt enrrentlv he chansed without recomniling the nrogram.

2.6 Merging and Splicing Input Files

Many applications require that data from several input files be combined and written on a single output
file. GetData provides two mechanisms for combining data from multiple input files; we refer to these
mechanisms as merging and splicing.

Merging is the combination of data for the same time interval from multiple files. The different
input files contain data for different signals. To merge data from multiple files, you must specify all the
file names, separated by commas, in a single read command. The read command may have continuation
lines but must not be split into separate read commands. For instance, the command

read /user/maine/firstLongFileName, &
/user/maine/secondLongFilename, &
/user/maine/thirdLongFileName

opens all three specified files and allows you to merge data from them. However, the sequence
of commands

read /user/maine/firstLongFileName
read /user/maine/secondLongFilename
read /user/maine/thirdLongFileName

opens the specified files one at a time. Each read command closes all previously opened input files.
Therefore, this sequence leaves only the data from the third file accessible.

GetData is limited to 10 simultaneously open input files. It is also limited to a total of 2000 total
input signals, no more than 1000 of which can come from a single input file.

When multiple input files are open, the signals command automatically determines which input file
contains the data for each input signal used. There is no outward difference in the usage of the signals
command. Because the input signals are selected solely by name, there is no way to indicate your
intent when the same signal name appears on two or more of the input files being merged. You can
resolve this ambiguity by first copying one or more of the input files to temporary files with renamed
signals; section 2.9 describes how to rename signals.

The input files being merged are not guaranteed to have the same frame times. Therefore it is
important to consider the issue of interpolation (section 2.8). If you use the thin parameter of the copy
command, the thinning is based on the frame times of the first file in the file list of the read command;
the data for all other files are interpolated as specified by the method command.

Splicing is the construction of a single output signal that is taken from different sources for different
time segments. You specify splicing by inserting other commands between copy commands. There are
two major forms of splicing, distinguished by what kinds of commands are inserted.

One form of splicing is to change the input file or files between two copy commands. The sequence
of commands

read filel

signals alpha, beta

write outFile

copy time = 9:0:0:0 - 9:0:30:0

copy time = 9:5:0:0 - 9:5:10:0
quit

makes an output file with a 30-sec segment of data from filel, followed by a 10-sec segment from Jile2.
This example assumes that both filel and file2 have signals named alpha and beta; because there is
no signals command between the copy commands, the previously specified signal list remains in effect.

Another form of splicing is to change the signal list between two copy commands. The sequence
of commands

read inFile

signals alpha, beta

write outFile

copy time = 0:0:0:0 - 9:29:59:999
signals alpha, betaBackup

copy time = 9:30:0:0 - 9:30:59:999
signals alpha, beta

copy time = 9:31:0:0 - 24:0:0:0
quit

copies alpha and beta except for a 1-min segment where betaBackup is substituted for beta (perhaps
the primary beta data were invalid during that segment). This kind of splicing should be done with
caution because GetData has few means of verifying that your specifications make sense; for instance,
you might have spliced a totally unrelated signal in place of beta. The signals appear on the output
file in the same order as listed in the signals command. For most purposes, the order of the signals
is irrelevant because you select signals by name rather than by position. However, when you insert a
signals command between two copy commands, the splicing depends on the order because the signal
names may be changed.

A single output file contains only one signal name per signal; there is no record of any name changes
that may have occurred by splicing. Also, the number of signals on an output file cannot be changed
by splicing. If you try to splice a time segment with fewer than the original number of signals, the
remaining signals will contain unpredictable garbage for that time segment; if you try to splice in more
than the original number of signals, the extras will be ignored. The names and number of signals
on an output file are established when the write command is encountered. Any subsequent signals
commands cause splicing. Because of the potential for undetected errors, GetData gives a prominent
warning message whenever this kind of splicing is attempted.

GetData does not support multiple output files open at the same time. Each write command can
name only a single output file. You can have multiple write commands in a job, but each one closes
any previously open output file and opens a new one. The sequence of commands

read inFile

signals alpha, beta

write outFilel

copy time = 9:0:0:0 - 9:0:10:0
write

signals p, q, T

write outFile2

copy time = 9:0:0:0 - 9:0:10:0

copies a segment of alpha and beta data to outFilel and then copies p, g, and r data to outFile2 for
the same 10-sec segment. The write command with no arguments causes outFilel to be closed without
opening another output file. This is not necessary, but if you omit that command in this example,
GetData will print a warning message about splicing when it encounters a signals command while an
output file is open. Because there are no copy commands between this warning and the subsequent
write command, no splicing would actually occur.

All the operations discussed in this section can be mixed in the obvious ways. A single GetData
run can involve merging, both kinds of splicing, and changes of the output file. For example, the
command sequence

read inFilel

signals alpha, beta

write outFile

copy time = 9:0:0:0 - 9:0:9:999
read inFile2, inFile3

signals alpha, betaBackup

copy time = 9:0:10:0 - 9:0:20:0
quit

involves merging and both kinds of splicing.

2.7 Applying Time Skews

The data files manipulated by GetData have only one time tag associated with each frame of data.
The data frame generally contains several data values, which are actually measured at slightly different
times. The data files do not contain explicit time tags for each individual data value. There would be
substantial overhead in saving an explicit time tag with each measurement. Instead, we assume that
the times of the individual measurements can be implicitly deduced from the frame time tag.

The simplest approach to computing the times of the individual measurements in a frame is to
assume that they all equal the frame time tag. This is often an adequate approximation; the error is
usually less than the sample interval and rarely more than a few times the sample interval. Analysis
programs almost invariably assume that all the data values in a frame have the same measurement
times. Some applications are very sensitive to crrors in this assumption, giving significantly erroneous
results if there are time errors of more than a few milliseconds (or even less). Other applications for
the same data can tolerate time errors as large as seconds.

GetData is a utility program rather than an end application. The timing accuracy requirements for
GetData depend on the application of the data. If the application is insensitive to time errors on the
order of the sample interval, GetData can use simple approximations for the measurement times. If
the application needs precisely time-tagged data, GetData must treat the time tags with corresponding
accuracy, accounting for the differences between the actual measurement times and the frame time tags.

The time skew of a mecasurement is defined as the actual measurement time minus the frame
time tag. The simple algorithms described previously approximate the skew as zero. When this is
not adequate, GetData can apply nonzero skews. GetData assumes that the skew for each signal is
constant from frame to frame; more complicated situations can be addressed by special patches, which
are not provided as part of the standard program.

Time skews can arise from many causes. Most instrumentation systems sample the measurements
cannantially dnrine the time interval: it is convenient to define the frame time tag to be the time at the

begining of the interval, giving a skew that is dependent on the measurement sampling sequence. The
physical instruments have dynamic response characteristics that can often be closely approximated as
time lags; the data sampled at a given time represent the physical value for a slightly earlier time.
Signal-conditioning filters also cause lags in the data.

The user must determine the total skew from these and other sources; GetData has no way to
calculate what the skew should be. There are two ways to specify skew values to be used by GetData:
the skew command and the fSkew parameter of the read command.

The skew command is the primary means for specifying skews in GetData. Any command name
beginning with skew will be accepted as a synonym. The body of the skew command consists of any
number of parameters in keyword syntax, separated by blanks or commas. The parameter names must
be the names of input signals or filtered signals. You cannot apply skews directly to calculated signals
or output signals, but you can apply skews to the input signals used in a calculation. The parameter
values are the skews in seconds. The command

skew alpha=.02, beta=.02 p=-.01

defines alpha and beta to have skews of 0.02 sec and p to have a skew of —0.01 sec. The skew for any
parameter not specified in a skew command defaults to zero.

Every time a read command is encountered, GetData resets all signal skews to zero. Therefore,
the skew command must follow the read command. Furthermore, if you are splicing data from two
files, you must repeat the skew commands after the second read command if the same skews apply to

both files.

There are significant performance penalties for processing signal skews, and these penalties become
larger as the skew becomes larger. For input files that have no active signals with skews or linear
interpolation (section 2.8), the program uses a special-case fast algorithm. As soon as an input file has
a single active signal skew or linear interpolation, the special algorithm no longer applies for that file
and the performance becomes substantially worse.

There are also limits to the magnitudes of signal skew that can be applied. These limits are functions
of several factors and can be increased if needed (but this will cause further performance degradation).
There will be a warning message if you exceed the limits.

A second means for specifying skews to be used by GetData is the fSkew parameter of the read
command. This parameter gives a skew that is added to the frame times of a file to obtain “corrected”
frame times. This corrected frame time is used in place of the raw frame time throughout GetData. If
any skews are specified in skew commands, they apply in addition to the file skew.

You give the fSkew parameter in keyword syntax, with the skew value in seconds. Each file named
in a read command has an independent fSkew parameter, which must follow the corresponding file
name, delimited by a blank. The command

read filel fSkew=5.6, file2, file3 fSkew=-50

specifies a skew of 5.6 sec for filel and —50 sec for file3. The skew of file2 is not specified and defaults
to zero.

The file skew is similar to an equal skew applied to every signal in the file, but there are subtle
differences. The file skew affects the computation of the output frame times discussed in section 2.5, but
tha cirenal cbawre da nnt Mara imnartantlv. the file skew has no limitations or performance implications.

The file skew may safely be several hours (perhaps to convert between G.m.t and local time). Individual
signal skews cause severe performance degradation in GetData when they exceed a few times the sample
interval. Therefore, if all the signals in a file have skews that are large relative to the sample interval,
it is most efficient to specify a file skew near the mean of the skews.

2.8 Interpolating in Time

Each output frame from GetData has a single time tag and data values at or near that time. As
discussed in section 2.7, most applications assume that the data values were measured precisely at the
frame time, and some applications are very sensitive to errors in this assumption. GetData must be
able to produce output files suitable for applications with precise timing requirements.

However, the raw data measurements are seldom conveniently available at precisely the required
times. Section 2.7 discusses how GetData computes the precise times of the input signals, and sec-
tion 2.5 discusses how it determines the output frame times. If there is only a single input file with
no signal skews and if the output frame times are determined by thinning the input frame times, then
all the input signals will be available at precisely the output frame times. In more general cases, the
signals must be interpolated to the required output times.

Note that interpolation applies only to input (or filtered) signals—not to output signals. In many
cases, each output signal corresponds to an input signal of the same name, making the distinction moot.
When an output signal is a calculated function of several input signals, it should be fairly obvious that
the input signals need to be interpolated to common times before the calculation can be done. However,
when an output signal is just a renamed version of an input signal, it is easy to get confused.

GetData provides two interpolation methods: hold-last-value and linear interpolation.. The hold-
last-value interpolation uses substantially less computer time but is inadequate for many time-sensitive
applications. Linear interpolation provides more accurate results for those applications needing them.
Higher order interpolation algorithms are possible, but it is difficult to justify their use in the context of
imperfectly measured time history data. Note that there are some signals that cannot be meaningfully
interpolated with any method other than hold last value; for instance, a digital word may just be a bit
pattern without a reasonable numeric interpretation.

You use the method command to specify the interpolation methods. Any command name beginning
with meth will be accepted as a synonym. The syntax of the method command is very similar to that
of the skew command. The body consists of any number of parameters in keyword syntax, separated
by blanks or commas. The parameter names must be the names of input signals or filtered signals.
The parameter values must be either hold (for hold-last-value interpolation) or interpolate (for
linear interpolation); any values beginning with h or i will be accepted as synonyms. For example,
the command

meth alpha=interp beta=i alt=hold-last-value mach=h

specifies linear interpolation for alpha and beta and hold-last-value interpolation for alt and mach.

If most of or all the signals in an input file will use the same interpolation method, you can simplify
the specification by using the hold or interpolate switches on the read command. These switches control
the default interpolation method to be used for any signal in the input file not named in a method
command. The interpolate switch is an antonym for hold and can be abbreviated to anything beginning
with interp. Each file named in a read command has independent hold and interpolate switches, which
must follow the corresponding file name, delimited by a blank. If neither switch is specified for a file,

-— ~ 1

read filel -hold, file2, file3 +interp
method dwi=hold alpha=interp

specifies linear interpolation for signals on file! and file3 (-hold is equivalent to +interp). The method
for file2 is not explicitly specified, so it defaults to hold-last-value interpolation. The signal dwi will
use hold-last-value interpolation, and alpha will use linear interpolation, regardless of which input file
they are on.

All previous interpolation method specifications are discarded whenever a read command is en-
countered. Therefore, the method command must follow the read command. Furthermore, if you are
splicing data from two files, you must repeat the method command after the second read command if
the same interpolation methods are to be used for both files.

Linear interpolation requires more computer time than hold-last-value interpolation. For input files
that have no active signals with skews (section 2.7) or linear interpolation, the program uses a special-
case fast algorithm. As soon as an input file has a single active signal skew or linear interpolation, the
special algorithm no longer applies for that file and the performance becomes substantially worse.

2.9 Selecting and Defining Signals

The signals command defines the signals to be written on the output data file. Section 2.4 describes
the simplest forms of the signals command, and section 2.6 discusses the role of the signals command
in merging and splicing. We now document the syntactic details and full capabilities of the signals
command. The most important feature not covered in previous sections is the ability to define signals
as calculated functions.

The full syntax of the signals command is
signals [+all|+add|+delete] outSigl[=ezprl] outSig2[=ezpr?] ...

where the square brackets ([]) indicate optional entries and the vertical bars (|) separate alternatives.
Any command beginning with sig will be accepted as a synonym for the signals command.

The optional switches all, add, and delete specify what will be done with the remaining arguments.
No more than one of these switches is allowed in a single signals command. If one of these switches is
present, it must be the first argument of the command. Only the + form of the switches is recognized;
you cannot, for instance, specify -delete.

If none of the optional switches is specified, the remaining arguments define the signals to be written;
any previously defined output signal definitions are discarded. Sections 2.4 and 2.6 show examples of
this usage of the signals command.

If the add switch is specified, the remaining arguments define additional signals to be written.
These new signal definitions supplement, rather than replace, any previous output signal definitions.
If there are no previous definitions, the effect is the same as if the add were omitted. The add switch
is a convenience feature that allows you to break a long signals command into a sequence of shorter
ones. For example, the command sequence

signals alpha beta
signals +add p q r

is equivalent to the single command

signals alpha beta p q r

The add switch is often useful in conjunction with command sequences also involving the other signals
command switches.

If the all switch is specified, the output signal list will be defined to consist of all currently available
signals. This switch is heavily used; some applications would be unduly burdensome without it. If all
is specified, any remaining arguments of the signals command are ignored. (Future versions of GetData
might generate an error message if such discarded arguments are present.) Section 2.4 shows examples
of the all switch.

If the delete switch is specified, the remaining arguments specify signals to be deleted from the
output list. Anything beginning with +del will be accepted as a synonym. When this switch is used,
the optional expressions in the signal definitions are irrelevant; only the names of the signals to be
deleted are required. Any expressions present will be ignored. This switch is most useful in command
sequences also involving the all switch of the signals command. For example, the sequence

read inFile

signals +all

signals +del alpha beta
write outFile

copy
quit

copies all the signals except alpha and beta from inFile to outFile. If inFile had many signals, any
other way of specfying this operation would be laborious.

The remainder of the signals command is a list of output signal names and optional expressions.
The signal names are separated by blanks or commas. If an expression is specified for a signal, the
expression is separated from the signal name by an equal sign; there may be blanks on either side of
the equal sign. The signal names are limited to 16 characters and cannot contain commas, equal signs,
quotes (single or double), parentheses, or embedded or leading blanks. Subsequent usage of the data
file will be easier if you also avoid plus and minus signs and if you start each signal name with a letter,
but these suggestions are not enforced. The output signal names must not be quoted. Like all other
GetData input, signal names are case insensitive.

The optional expressions define how the output signals are to be computed. If the expression for
a signal is omitted, the default computation sets the output signal equal to an input (or calculated)
signal of the same name. All the examples given previously used this default. Note that even though
an output signal and an input signal may have the same name, GetData always considers them to be
separate entities. For example, the command

signals +delete alpha

deletes only the output signal definition for alpha; it does not affect the existence of an input signal
named alpha.

Only simple linear expressions can be defined using the expressions in the signals command. If more
complicated expressions are required, they must be coded in FORTRAN and installed as described in
sections 3.1 and 3.2. If an expression is given, it consists of one to five terms in the forms

sign constant
sign signal
sign constant * signal

Embedded blanks are not allowed in expressions; the blanks in these form descriptions should not be
included literally in the expressions. The sign is either + or -; it may be omitted from the first term of an
expression. The constant is an unsigned real constant with no exponent part. The signal is the name
of an input or calculated signal; this includes only calculated signals defined by calculated function
subroutines (section 3.1) or filter subroutines (section 3.2), not calculations defined by expressions in
the signals command. The signal names follow the same syntax rules as output signal names. The
signal names in an expression may be enclosed in quotes (either single or double, but they must match).
If a signal name in an expression contains plus or minus signs, or if it starts with a digit or a dot,
then it must be enclosed in quotes to avoid possible misinterpretation. Each expression is limited to a
length of 80 characters.

All signals used in the computation are skew corrected and interpolated to the output frame times
as specified by the method command.

The simplest and most common use of expressions in the signals command is to define an output
signal equal to an input signal of a different name. For example, the sequence

read inFile

signals +all

signals +delete pitch
signals +add q=pitch
write outFile

copy
quit

copies everything from inFile to outFile, renaming pitch to g. The following example defines an average
elevator position (de-avg) and a corrected angle-of-attack (alpha-cor) signal.

signals de-avg=.5%"de-left"+.5+"de-right" &
alpha-cor="alpha-raw"+3.125%q

Note the usage of quotes in the expressions but not in the output signal names. Other common kinds
of expressions include sign corrections, as in

signals an=-an
and constants, as in
signals altitude=0

Constant signals might be used as placeholders for unavailable data.

The expression parser is quite crude; do not be confused by its similarity to FORTRAN syntax. It
cannot handle any forms other than those listed. For instance, the multiplying constant must always
precede the signal name instead of follow it. Exponent form (for example, 1.e-3) is not accepted for

constants. Parentheses are not recognized. There can be no blanks in an expression, except around
the equal sign.

The parser does not strictly enforce the rules for signal name syntax in all contexts. You can
sometimes get by with expressions not meeting the stated syntax rules. For instance, 1#3 is interpreted
as a constant 1 times a signal named 3, even though the 3 is not enclosed in quotation marks. Such
expressions are confusing and are not guaranteed to work with future parsers; they should be avoided.

The only optimization of the expressions is a special case for expressions consisting of a single signal
name with the multiplying constant omitted or equal to +1.0. (The large majority of expressions have
this form.) Expressions such as 2+2 will work, but the addition will be repeated at every time point,
which is a horrible waste of computer time.

The signal name 1.0 is reserved for internal use. If you have an input signal with this name,
references to that input signal will not give the correct results.

Ill-formed expressions will give an error message and substitute a blank expression, which will give
the value 0. If any of the signals used in the computation of an expression is unavailable, an error
message will be printed and the value 0 will be used for that signal. Although currently inactive, the
expression will be remembered and may become valid after a subsequent read command.

The program does not currently detect the occurrence of multiple output signals of the same name,
but files with such duplicate names may cause difficulties for you in the future. If there are multiple
input signals with the same name, there is no way to specify which one you want; the result is not
guaranteed to be repeatable.

2.10 Showing Signal Definitions

The show command shows information about the currently defined signals. The command list is
accepted as a synonym. The current version of the show command has no arguments and can give
voluminous output to the terminal if many signals are defined; future versions may include arguments
to allow more selective display.

There are three sections of the display from the show command: input signals, calculated signals,
and output signals. The input signals section shows the names of the signals available on all the
currently open input files. If any filter subroutines are installed (section 3.2), this section also includes
the names of the filtered signals.

The calculated signals section shows what calculated function subroutines are installed (section 3.1)
and what signals they calculate. Parentheses around the name of a calculated signal indicate that the
signal cannot be calculated because other signals required for the calculation are missing. The signals
shown in parentheses are not counted as available; they are included in this display only to document
which calculated signals are installed.

The output signals section shows the names and expressions of all currently defined output signals.
If an output signal cannot be calculated because it depends on unavailable input signals, the output
signal name will be shown in parentheses; the value 0 will be used for any such output signal.

2.11 Automating Command Sequences

Some GetData runs require more command input than is reasonable to enter interactively. The most

JR Y (R E E U P LR D D UL L o B B § SO o

over a hundred names are not unusual. Interactive input of such long lists is difficult and error prone.
The do command provides a means of automating such input.

The do command takes a single argument, which is the name of a file that we call a command
file. The allowable format for file names is system dependent. The do command will cause GetData to
begin reading command lines from the specified file. The file should be a normal text file containing
GetData commands exactly as they would be typed interactively; it can include continuation lines and
comments. The file can contain any number of GetDate commands. Any GetData command, except
for a nested do command, can appear in a command file.

After executing all the commands in the command file, GetData will again prompt for interactive
commands from the terminal (unless the command file contained an explicit quit command, which
is allowed). For consistency, do commands are also allowed in batch runs, although they are not as
necessary in a batch context.

The do command is most useful when the same sequence of commands will be used in several
GetData runs. The command sequence then need be entered only once into the command file. If a
command is particularly long, it can be useful to put it in a command file even if only a single run
is intended. Interactive typing of long commands is very error prone; putting long commands in a
command file makes it less likely that they will be mistyped, and it makes correcting typing mistakes
less painful.

For an example of a do command, suppose that the file sigs contains the lines

-- standard signal list for aero group
signals &

alpha = aal022 &

beta = aal023 &

p = rgl002 &
q = rg0003 &
r = rg0004 &

mach = cf00N1 &
alt = cf0002

with several dozen similar lines replacing the ellipsis. This is typical of many command files; it selects
a fairly large number of signals and changes their names from forms meaningful to the instrumentation
engineers to forms more meaningful to data analysts. The command sequence

read inFile

do sigs

signals +delete alpha beta

signals +add alpha=bb1022 beta=bb1023
write outFile

copy
quit

uses most of the signal definitions from the sigs file but substitutes different definitions for alpha

2.12 Running System Commands From GetData

There are many circumstances where, in the middle of a GetData run, you want to run some system
command. For instance, you may want to see the list of files in a directory because you do not recall
the exact name of a file you need. The sys command in GetData provides this capability.

This command is highly system dependent and may not be installed in all implementations of
GetData. It may have some limitations in other installations.

Anything beginning with sys will be accepted as a synonym for the sys command. The remainder of
the command after the command name is any legitimate system command, complete with any needed
arguments. After the specified command completes, control will return to GetData. The ELXSI
implementation will return to GetData even if the system command aborts for some reason; this may
not be true of all implementations on other systems. Some system commands may cause strange effects
too diverse to catalog here.

For example, on the ELXSI, the command
sys files
will list the names of the files in your current directory. The command
sys to monty "I’1ll get to it later. I’m busy now."
sends a message to another user without exiting GetData. Finally, the command
sys emacs cmdFile

enters the emacs editor to create a file called cmdFile; you might do this to create a command file to
be executed by the do command (section 2.11.)

2.13 Specifying File Formats

The file formats supported by GetData are determined by the particular set of time history file in-
terface routines (section 3.3) installed in the program. The available file interface routines may vary
substantially at different sites.

The write command of GetData has an optional third argument used to specify the format of the
output data file. For example, the command

write outFile unc2

specifies that outFile is to be written in unc? format. If the third argument of the write command is
omitted, it defaults to cmp2. (On systems that do not support this format, you might want to change
the default to unc2.)

The precise interpretation of this argument depends on the time history file writing routines in-
stalled. Some specialized routines that support only a single file format may ignore the argument.
The default routines currently installed at Ames-Dryden support multiple formats as specified by this
arenment. The formats currently supported by these routines are the following:

unc?2 uncompressed 2 format—This is a binary uncompressed format appropriate for use by many
computer programs.

cmp2 compressed 2 format—This is a binary compressed format for compact storage of large data
files. This format uses machine-specific features and is not included in the portable version of
the code. Similar formats could be implemented on other machines.

ascl ASCII 1 format—This is an ASCII format intended primarily for tape transfer between different
systems. The format is highly portable. Files in this format can also be displayed on a terminal
screen or printed, although the lis! format is more legible. The ASCII format is far less efficient
than binary formats, and it should be used only in circumstances where the binary formats are
inadequate, notably transfer between incompatible machines. The asc! format consumes about
five times the file size of unc2 format and requires an order of magnitude more processor time.

lis1 list 1 format—This is an ASCII format suitable for printing or screen display. The format is
intended only for human use; there are no routines provided for reading a file in this format.

Section 3.3 gives details of these formats.

There is no corresponding argument in the read command to specify the formats of the input data
files. The time history file reading routines are normally expected to automatically determine the
formats of the input files. The routines currently installed at Ames-Dryden automatically recognize
and read the unc2, cmp2, and ascl formats. On some systems, this automatic format recognition
may be difficult to implement. Furthermore, there may be file formats in use that are difficult to
automatically distinguish on any system. In such cases, separate file reading routines will be required
for each format. Should this prove burdensome, it would not be particularly difficult to add arguments
to the read command to specify the input file formats. That would still require, however, that the
user know which format is correct for each input file; it is far more convenient to determine the format
automatically where feasible.

If the desired formats are supported by the routines installed in GetData, file format conversion
is done as an automatic part of the copy operation. With the routines installed at Ames-Dryden,
the sequence

read inFile
signals +all
write /dev/tape/001234 ascl

copy
quit

copies all the data from inFile to tape number 001234, writing the tape in ASCII 1 format. The file
InFile may be in any supported format (except lisl, which is not supported for reading). The sequence

read /dev/tape/005678
signals +all
write outFile

copy

copies all the data from tape number 005678 to outFile, writing the file in the default compressed 2
format.

3 Programmer’s Guide to GetData

This section documents the FORTRAN code of the GetData program. The emphasis of the documen-
tation is on those areas of the code most likely to need modification for some purpose. Some portions of
the code are system dependent and must be modified to install GetData on different computer systems.

In addition, there are several modules (sets of routines) intended to be user modifiable. It is possible,
of course, for a user to modify any routine in GetData. The routines labeled as user modifiable are
specifically designed for the installation of customized code. The interface to these modules is defined
in such a way that the user can write customized versions without understanding the details of the rest
of the program.

3.1 Calculated Function Modules

A calculated signal (also called a calculated function) is a signal that is computed as a function of other
signals rather than being directly read from an input file. The signals command allows the definition
of some simple calculated signals as described in section 2.9. Calculations more complicated than those
supported in the signals command can be implemented in calculated function modules.

Up to five calculated function modules, called CF1 to CF5, can be installed in GetData; this limit
can be easily modified. Each module can define an arbitrary number of calculated signals (subject
to the limit of 2000 total signals from all sources). Each calculated function module consists of three
FORTRAN routines (plus any subroutines that the three primary routines might require). The basic
GetData program includes empty routines for all five calculated function modules. To install a cal-
culated function module, you must create a GetData program with the customized routines replacing
the corresponding empty routines provided with the basic program. The procedure for doing this
installation is system dependent.

The routines of the zth calculated function module are named allocateCFz, activateCFz, and
doCFr; for example, the routines for the CF1 module are allocateCF1, activateCF1, and doCF1. The
general roles of these routines are as follows:

allocate CFz declares the names and allocates channel numbers for the signals calculated by this
module. This routine also locates all the input signals required for the computations; it disables
any calculations that cannot be done because of unavailable inputs. This routine is called before
any calls to activateCFz or doCFz. It may be called multiple times in a single job if multiple
read commands are executed. The routine must redo all allocations on each call.

activate CFz activates needed calculations. This routine determines which calculations are needed
for the currently requested output signals. It activates those calculations and declares their
input signals to be needed. This routine may be called multiple times as the list of requested
output signals changes. It will always be called at least once between any call to allocateCFz and
subsequent calls to doCFz.

doCFz evaluates calculated signals. This routine performs the actual computation of the calculated
signals. It uses channel numbers from allocateCFz and activation flags from activateCFz. This
routine is called one time for each output frame.

The detailed interface specifications for these routines are given in the help files (app. A). The sample

1 ~ L RENPUNI B SN e o

Each calculated function module can use signals from the input files, the filter module, and lower
numbered calculated function modules. It cannot use signals from higher numbered calculated function
modules or signals defined in the signals command. The calculations are performed immediately
before writing each output record; they have no intrinsic sample rates. The input signals used in the
calculations are all skewed and interpolated to the output times as specified by the method command
before the calculations are performed.

The calculated function modules are intended primarily for calculations that give each output value
as a function of input values at the same time. Slight extensions are possible; for instance, it is possible
to implement a simple differentiator in a calculated function module by internally saving time and data
values from the previous output frame. Such extensions are highly dependent on the output frame
times. Computations that involve substantial interdependence of data in different frames are probably
best done in a separate program.

Once a calculated function module is installed, the usage of the calculated signals is substantially the
same as the usage of signals read from input files. For most purposes, the user need not even be aware
of the distinction between calculated and input signals. The only major distinction is in determining
which input files are required. The calculated signals will be available only if their required input signals
are available. This list of required input signals should be documented for each calculated signal.

3.2 Filter Module

Filters cannot be conveniently implemented in the normal calculated function modules because digital
filters are inherently linked to specific sample rates, whereas the normal calculated function modules
do not have inherent sample rates and may be called at different rates, depending on the requested
output. Therefore, GetData makes special provisions for a filter module. Only a single filter module is
currently allowed; this module can support multiple filters.

The basic GetData program includes empty versions of the filter routines. To install a filter module,
you must create a GetData program with the customized routines replacing the corresponding empty
routines. The procedure for doing this installation is system dependent.

The fundamental difference between the filter module and the other calculated function modules
is that the filter routines are linked to the input frame times instead of the output frame times. This
allows the user to freely select output frame times without affecting the filter characteristics. The
interface to the filter module provides for simultaneous independent filters on different input files; this
complication does not arise in the other calculated function modules.

The filter module consists of the routines allocateFilt, activateFilt, reMapFilt, and doFilt. The
general roles of these routines are as follows:

allocateFilt declares the names and allocates channel numbers for the filtered signals. This routine
also locates the unfiltered signals used as inputs to the filter module. There may be multiple calls
for the same input file number if there are multiple read commands; each call must completely
redo the allocations for the specified input file number.

activateFilt activates needed filters. This routine determines which filtered signals are needed for
the currently requested outputs. It activates those filters and declares their unfiltered input
signals to be needed. There may be multiple calls for the same input file number as the list of
requested output signals changes. ActivateFilt will always be called at least once between any
rall to allocate Filt and suhseauent calls to doFilt.

reMapFilt remaps filter channel numbers to compressed locations. This routine remaps the channel
numbers used by the filter subroutines. The channel numbers used in allocateFilt and activateFilt
reserve channels for all signals available on each input file. For efficiency, the actual processing uses
a data vector composed of only the signals needed, with the unused signals omitted. Subroutine
reMapFilt remaps the channel numbers of all signals used in the filter module to channel numbers
in this compressed data vector. ReMapFilt is called at least once between any call to activateFilt
and subsequent calls to doFilt.

doFilt evaluates filtered signals. This routine performs the actual filter computations. It uses the
channel numbers from reMapFilt. DoFilt is called one time for each input frame of each open
input file.

The detailed interface specifications for these routines are given in the help files (app. A). The sample
routines mentioned in the help files are listed in appendix B.

The filter interface conveniently allows only recursive causal filter forms; that is, the filters can
depend only on prior and current data, not on future data. There is no easy way to run forward-
backward filters or smoothers. Note that you can skew the filtered result to approximately compensate
for the group delay of the filter.

The filters can use only signals that come directly from an input file. Calculated signals cannot
be filtered (though they can use filtered inputs, which normally achieves about the same effect). The
input signals used for the filters are raw, without skew corrections or interpolation. The filtered result
may be skewed and interpolated in the same way as signals read from the input files. Normally, the
appropriate skew for the filtered signal is different than that for the raw signal.

3.3 File Interface Modules

GetData uses the time history file interface modules for all operations on time history files. These
modules are intended to be used in any program that reads or writes time history data files; the
modules have no dependence on internal data structures of GetData. The read and write modules are
independent to facilitate format conversion applications where a program uses the read module for one
format and the write module for a different format.

To use GetData with a particular set of read and write modules, you must create a version of
GetData with the customized routines replacing the standard ones. The procedure for doing this
installation is system dependent.

The basic GetData program includes a set of read and write modules that simultaneously support
multiple formats. Section 3.4 describes the specific formats supported by these modules. The read
module automatically determines which of the supported formats to use for each input file; the sup-
ported formats were specifically designed to facilitate such automatic determination. It may not be
practical to implement the automatic format determination on all systems. The write module requires
explicit specification of which format to use for each file. Both the read and write modules are struc-
tured to allow easy addition of more formats. These multiple-format modules reduce the necessity for
creating multiple versions of GetData with different read and write modules.

The file read module consists of seven routines: openR, rSigs, sigsR, chansR, rewR, fSeek, fRead,

and closeR. The general roles of these routines are as follows:

openR opens a file for reading. The file name is supplicd as an input argument. This routine must

-~ - Mo a1 S 230 Mhn cniiblon mndeimnn A frinatiAn

value of true if the open is successful. If the open fails for any reason, the function value returns
false. The most common reason for an open failure is that the specified file does not exist; security
limitations or unsupported file formats can also cause failures.

rSigs finds names of the available signals. This routine may be called any time after openl? and before
closeR. Use of this routine is optional.

sigsR specifies which signals are to be read. This routine selects signals by name. This routine can be
called any time after openR and before closeR. The data vectors returned from subsequent calls
to fRead and fSeek will contain the signals specified in the most recent call to sigsR or chanskt.
When a file is opened by openR, it is initialized to select all available signals; this default remains
in effect until the first call to sigsR or chansR.

chansR specifies which channels are to be read. This routine is similar to sigsR, except that the
signals are specified by channel number instead of by name. The use of sigsR is usually preferred.
ChansR is provided primarily for support of older programs and may eventually be phased out.

rewR positions the file at the first frame. This routine repositions the file so that subsequent calls to
fRead will return data starting at the first frame of the file. The file is automatically positioned
to the first frame by openR, so an initial call to rewR is not needed.

fSeek positions the file to a user-specified time and returns the first frame of data after that time.
The routine returns a function value of true if the operation is successful. If there are no data
after the specified time, the routine returns a function value of false, and the returned data vector
is undefined.

fRead returns the next sequential frame of data on the file. The routine returns a function value of
true if its operation is successful. If there are no more data on the file, the routine returns a
function value of false, and the returned data vector is undefined.

closeR closes the file. This routine should be used to close any file opened by openR. After closeR is
called, no further reference can be made to the file unless it is subsequently reopened.

The detailed interface specifications for these routines are given in the help files (app. A).

The file write module is somewhat simpler than the file read module because there are no issues of
file positioning or signal selection. You must write the frames in time-scquential order, and you must
provide values for every signal in every frame. The file write module consists of three routines: openW,
fWrite, and closeW. The general roles of these routines are as follows:

openW opens a file for writing. The file name is supplied as an input argument. Other input
arguments specify the names of the signals and the file format. The interpretation of the file
format argument may vary in different implementations of the module; some implementations
may ignore it. This routine must be called before any other reference to a file by the write module.

The routine returns a function value of true if the open is successful. If the open fails for any
reason, the function value returns false. Common reasons for open failures include invalid file
names, security limitations, and unsupported file formats.

fWrite writes a single frame of data to a file opened by openW. It should be called once for cach
frame to be written. The frame times must be in time-sequential order: this is not currently
enforced but may be in future versions.

closeW closes the file. This routine should be used to close any file opened by openW. After closeW
is called, no further reference can be made to the file unless it is subsequently reopened. The
closeW call is mandatory; the created file is not guaranteed to be readable if it is not closed with
closeW.

The detailed interface specifications for these routines are given in the help files (app. A).

Time history data files can be accessed either through the time history data file read and write
modules or through normal FORTRAN input-output statements. The same file can be accessed in
different ways at different times. However, the two forms of access should not be mixed during a single
open. If a file is opened with openR or openW, it should be accessed only through the file interface
modules until it is closed. Any other reference to the file, even something as simple as a rewind, may
disrupt the operation of the interface module.

The following sample program fragment illustrates the use of both the file read and file write
modules. This fragment copies the signals named alpha and beta from inFile to outFile.

external openR,sigsR,fRead,openW
logical openR,fRead,openW
integer nSigs,nAvail

parameter (nSigs=2)

double precision time,data(nSigs)
character sigs(nSigs)*16

data sigs/’alpha’,’beta’/

if (.not.openR(11,’inFile’,nAvail)) call abort(’no inFile’)
call sigsR(11,sigs,nSigs)
if (.not.openw(12,’outFile’,nSigs,sigs,’unc2’))
x call abort(’cant open outFile’)
100 if (fRead(11,time,data)) then
call fWrite(12,time,data)
goto 100
endif
call closeR(11)
call closeW(12)

The subroutine abort referenced in this sample fragment is assumed to print an error message and stop.

3.4 File Formats

The file read and write modules included with the basic GetData program support the following four
file formats:

unc2 uncompressed 2 format—This is an uncompressed binary format suitable for most internal and
interprogram files.

cmp2 compressed 2 format—This is a compressed binary format intended to save space when used
for large files. It is substantially more complicated than unc2 format. The implementation of
this format is highly system dependent, so the format is disabled in versions of the code intended

ascl ASCII 1 format—This format is intended for tape transfer between different systems. The format
is highly portable. This format is very inefficient, both in file size and processing requirements,
50 it should not be used when one of the binary formats will work. Files in this format can he
listed on terminal screens or printed, but the result is not particularly easy to read.

lis1 list 1 format—This format is intended for listing to terminal screens or printing. The read module
does not support this format; files written in this format are only for human examination—not
for input to computer programs.

Detailed descriptions of these formats are given in the help files (app. A). There is also a help file for
uncl format, which is supported in some versions of the modules.
The following is a listing of a short sample file in ASCII 1 format:

format asc 1

nChans 12

names alpha q v theta

an ax gbar de beta

P r phi

data001
34988.023 3.8622436523438 -.27187347412109 357.82812500000
5.2135009765625 1.0374450683594 .64163208007813E-01 152.17187500000
.16679763793945 -.57655334472656E-01 .25144958496094 -.12891769409180

-2.9539794921875
34988.049 4.0593261718750 -.17108917236328 357.92187500000

5.2135009765625
.23110304027796E-04
-2.9539794921875

1.0139465332031
.13263320922852

.62057495117188E-01 152.25000000000
.44789886474609 -.42504119873047

34988.073 3.9017333984375 -.70299148559570E~01 357.92187500000
5.2135009765625 1.0021972656250 .28367996215820E-01 152.25000000000
.16679763793945 .13263320922852 -.43224334716797E-01-.42504119873047
~2.9539794921875
34988.099 3.8623046875000 -.37266540527344 357.92187500000
5.2135009765625 1.0256958007813 .81008911132813E-01 152.25000000000
.33340454101563 .89379882812500 .64434814453125 -.12891769409180
~2.9539794921875
The same data in list 1 format look like
alpha q v theta an
ax gbar de beta P
r phi
09.43.08.023 3.8622 -.27187 357.83 5.2135 1.0374
.64163E-01 152.17 .16680 -.57655E-01 .25145
-.12892 -2.9540
09.43.08.049 4.0593 -.17109 357.92 5.2135 1.0139
.62057E-01 152.25 .23110E-04 .13263 .44790
-.42504 -2.9540
09.43.08.073 3.9017 -.T0299E-01 357.92 5.2135 1.0022
.28368E-01 152.26 .16680 .13263 -.43224E-01
-.42504 -2.9540
09.43.08.099 3.8623 -.37267 357.92 5.2135 1.0257
.81009E-01 152.25 .33340 .89380 .64435
-.12892 -2.9540

rma k] .

e d aenan® Fammnnte nra nnat nrintahla

3.5 System Dependencies

GetData is coded in FORTRAN 77. It largely conforms to ANSI standard FORTRAN (ref. 2); this
section describes all nonstandard or nonportable usages in GetData.

The program requires a full language FORTRAN 77 compiler; it makes extensive use of features
included in the full language standard but not in the subset language. The items discussed in this
section involve either extensions to the full language, details left unspecified by the standard, or system
routines supplied independently of FORTRAN.

The program code is divided into several separate files. The discussions in this section are organized
by the source code files to which they apply. The following items apply throughout the program.

tnclude syntax—The code is maintained on the ELXSI with common blocks and some other code
fragments segregated into separate files. Include directives specify where these fragments should
be inserted into the source code. Although most systems provide such a capability, the specific
syntax varies widely. Some distributed copies of the code have the fragments already inserted,
which simplifies the initial conversion issues but complicates subsequent program maintenance.

Precision—All floating-point variables in GetData are declared double precision, which is appropriate
for scientific data on 32-bit systems. Double precision will work on 60-bit and 64-bit systems,
but it is probably wasteful.

The current code does use single precision in two routines: fRunc2 and fWunc2. These routines
read and write unc2 format records, which are defined to contain single-precision data values
to conserve file space. The fRunc2 and fWunc2 routines appropriately translate between the
double-precision data in their arguments and the single-precision data in the files.

GetData adheres to coding practices that facilitate easy changes of the precision. The program
can be converted from double precision to single precision simply by replacing all occurrences of
double precision with real. The only additional change required is in routine oWuncl, which
deduces the number of signals in an obsolete unc! format file; a single-precision version should
subtract only one word for the time variable instead of two.

Long names—GetData does not conform to the ANSI limit of 6-character symbolic names. No
names longer than 15 characters are used except for a few ELXSI intrinsic names that are not
portable anyway.

ASCII character set— GetData uses the full printable ASCII character set, including lowercase and
special characters. Character comparisons are explicitly coded to be case insensitive. There is
no explicit dependence on the ASCII collating sequence. The special characters are used only in
noncritical places such as help file text; any legal characters can be substituted without impairing
program functionality. No nonprintable characters are used.

Conversion to other character sets is a simple automatic translation. After such translation, the
code should work in other character sets, including EBCDIC and uppercase-only sets.

Unit numbers—ANSI does not completely specify the set of allowable file unit numbers. File unit
numbers in GetData are all specified by parameter statements to facilitate changing them. The
unit numbers most likely to need changing are those for the standard input and output files
(the terminal for interactive jobs); these are specified by the parameters input and ouput at the
beginning of every routine. The code provided uses unit number 5 for input and 6 for output.

open statements—Open statements are common places for system-dependent code. Several specific
instances are mentioned later in this section. You may find that efficiency or operating conve-
nience can be improved by making other changes to open statements. even if the program works
as delivered.

The allowable file names for open statements are not specified by the standard and may be
different on different systems.

readOnly parameter—A nonstandard readOnly parameter is used in several open statements. This
parameter reduces the chances of accidental file corruption and facilitates concurrent access to
the same file by multiple jobs. It is currently used in routine doDo and in the openR routines for
various file formats.

The readOnly parameter is noncritical and can be removed for systems that do not support it or
an equivalent.

itmplicit none—The GetData code uses the implicit none statement. This statement helps detect
coding errors but has no effect on the generated code. These statements can be removed safely
if your system does not support this feature.

Initialization— GetData does strictly adhere to the standard in avoiding references to undefined
variables. Any local variables that are required to retain their values between calls to a routine
are declared in save statements. The program will therefore work correctly with compilers that
allocate local variable storage on a stack.

The following items apply to the rem.ffile. This file contains general utility routines used in GetData
and several other programs.

booboo routine—Subroutine booboo calls the ELXSI intrinsics S$Init, DCI$StackTrace, and $Put to
format and print a traceback. This should be converted to calls to appropriate system routines
on other systems. On systems that do not provide user-callable traceback routines, it may be
possible to obtain a traceback by intentionally causing a run-time crror. If there is no easy way
to obtain a traceback, booboo can simply stop after printing its error message. The traceback is
not critical except as a debugging aid. The program is not supposed to call booboo except as a
last resort when a program bug or other unrecoverable problem is detected.

Subroutine booboo should never return to the routine that calls it. A call to booboo generally indi-
cates that the program is not in a state to proceed successfully. A return may have unpredictable
results, such as exceeding array limits.

clock routine—Subroutine clock calls system routines date and time to obtain the date and time
as printable strings. This function is used only for labeling. If corresponding routines are not
available, you can change this routine to return blank strings.

String functions—Subroutines upCase and loCase and function strEq call ELXSI intrinsics for string
case conversion and case-insensitive comparisons. Machine-independent versions are included as
comments in the code. The machine-independent versions are substantially (up to an order of
magnitude) slower than the ELXSI intrinsics. The machine-independent upCase and loCuase
make assumptions about the character set that are technically nonstandard but work in most
environments, including EBCDIC and uppercase-only systems. (These routines leave the data
unchanged on uppercase-only systems.)

recLen routine—The recLen function uses a system-dependent error code. This function is used only
for support of the obsolete unc! file format; it can be ignored if support for that format is not
needed. If support for unc! format is needed, it is easy to deduce the required error code.

sysErr routine—Subroutine sysErr calls the ELXSI intrinsic $ErrorMsg to print a detailed error
message about the preceeding input—output error. This is used in GetData to help the user
determine why a file could not be opened. Some systems may need the value returned by the
iostat parameter of the open command. Therefore, this value is passed as an argument to sysErr
even though the ELXSI does not use it.

This function is noncritical and can be deleted if no corresponding system error message features
are available.

The following items apply to the getCmd.f file. This file contains the “front end” routines to read
user commands from the terminal or alternative input files. It also contains code to implement some
commands, such as help, that are pertinent to many interactive programs.

File kind intrinsics—The ELXSI intrinsics FS$ReturnFileKind and FR$FileDescriptor and the pa-
rameter FS$TerminalFileKind are used by the function inCmd. These intrinsics are used to de-
termine whether input is coming from the terminal or not. This is then used to control whether
the program echos the input. This allows the program to echo alternative input files to the
terminal without duplicating the normal operating system echo of terminal input.

The echo function is noncritical. If your system cannot easily determine the type of input file,
you can simply hard-wire the echo variable to false.

doSys routine—Subroutine doSys is completely system dependent. The purpose of this subroutine
is to execute a system command line from within the program.

Although very convenient, the doSys subroutine is not critical to the basic program operation.
If you cannot implement an equivalent operation, you can make this subroutine print an error
message saying that it is unimplemented. In this case, the sys and help commands will not work.

doHelp routine—the help command is implemented in subroutine doHelp by using the doSys routine
to access the ELXSI help utility. It therefore depends on both a working doSys subroutine and a
compatible help utility. It is very unlikely that a fully compatible help utility will be available on
anything but an ELXSI. Also, the GetData main program calls the setHlp entry with a specific
directory name applicable only to the Ames-Dryden system.

Although useful, the help command is noncritical. You can run the program with doHelp changed
to simply print an error message and return. If some other system help utility is available, you
might reformat the help files as required and change doHelp to invoke the corresponding help
utility. Alternatively, you could write code to perform at least the simplest function of the help
utility. At its simplest level (a good one does much more), a help utility just opens a text file
with a name constructed from the help argument and lists this file to the terminal screen. This
would not be overly difficult to do in standard FORTRAN.

The following items apply to the file interface modules:

Delete in open W —The openW function should attempt to delete a file (if it exists) prior to writing

a new file of the same name. This avoids potential problems if some characteristics (such as
.- N - . s oA . Lev R TR | [ALt ftaa. L. DT VOT vrhwnian

of openW uses the ELXSI intrinsic FS$Delete for this purpose. This code is “commented out”
of the version intended for other machines.

The issue of incompatible file characteristics may not exist on some systems. In that case, or if
operational use patterns assure that the old characteristics will always be compatible with the
new usage, you can omit this call. Otherwise, you must substitute equivalent system-dependent
code or use procedures that handle the problem external to the code.

Direct access open—Routines oRasc!, oWunc2, and oWascl do direct access opens on files later
used with sequential input-output statements. This is for ELXSI-specific performance and con-
venience reasons. There is no reason why standard sequential access opens should not work.

Block size—The open statements in oRasc! and oWascl have block size specifications. These can
be removed safely for most applications.

Rapid file positioning—Functions fizedLen, nRecs, and fSec have system-dependent code to do
rapid file positioning. This is primarily of concern for very large data files. If this code cannot
be converted easily, then fizedLen should be changed to always return the value false; this will
prevent fSec and nRecs from ever being called.

Open in openR—The multiple-format version of the openR function needs to be able to read at
least part of the first record of any supported file format without knowing which format the file
uses. The supplied version does formatted input from the file, which may have been written with
formatted or unformatted writes, depending on the file format. The standard does not preclude
formatted input from files written with unformatted output, but it does not require all systems
to support such an operation.

On some systems, this may be difficult to achieve in full generality. This may restrict the utility
of the automatic format recognition on such systems, possibly requiring manual external specifi-
cation of file characteristics.

cmp2 format—The cmp? file format is highly ELXSI specific. This format is disabled on versions of
the code meant for porting to other systems. Similar compression ideas apply to many systems,
but efficient implementation may require substantial work.

The following items apply to the GetData main program or the routines specific to GetData:

Command-line processing—The GetData main program calls the ELXSI $CheckArgs intrinsic to
process the command line used to invoke the program. GetData does not actually use any
command-line parameters; the only effect of this call is to check for an erroneous command line
and give a reasonable error message. Without this call, some command-line errors may cause
subsequent error messages in less obvious contexts. In most conversions, you should simply omit
this call.

Performance testing code—The function copyl calls the ELXSI intrinsics OS$ReadCpuTimer and
$Switch Var. Some associated variables are declared with the nonstandard type integer*8. These
calls and variables are used to compute performance statistics if activated by a shell switch
variable. The calls and associated code can be removed safely; they are primarily used for
developmental testing and might not be present in versions distributed for production use.

Default format—Subroutine pWrite defines the default output file format to be cmp2. The cmp?
format is not supported in the portable version of the file interface module; therefore, you will
menhakle wrant ta chanae thie dofanlt to une2.

3.6 Specific Conversions

This section documents the specific changes we have found necessary to convert GetData to some
other systems. These conversions were done as part of the program validation, not for operational
use. Therefore, we did not spend much time on obtaining the best efficiency or converting noncritical
features. Furthermore, our experience on these systems is limited; there may be better ways to do
some of the functions. For production versions, you will probably want to do further work, but these
tested changes give a reasonable starting point.

This section just briefly lists the changes required for these conversions. Section 3.5 further discusses
the conversion issues.

3.6.1 VAX-VMS Conversion— This section describes conversion of the code to run on a DEC
VAX running VMS (Digital Equipment Corporation, Maynard, Massachusetts).

The following change was made throughout the code:

include syntax—The syntax of all include statements was changed to
include ’whatever.com’

as accepted by the VAX compiler.
The following changes were made in the rem.f file:

booboo routine—The calls to ELXSI intrinsics were removed from the code in booboo. We do not
know whether appropriate substitutes exist.

String functions—The routines loCase, upCase, and strEq were changed to use the “commented
out” machine-independent versions of the code. The VMS STR$ UPCASE procedure could be
used in upCase, but we do not know of corresponding VMS procedures for loCase and strEg.

sysErr routine—Subroutine sysErr was changed to print just the error number. Obtaining a more
reasonable error message seems to be quite complex.

The following changes were made in the getCmd.f file:

File kind intrinsics—The calls in inCmd to ELXSI intrinsics were removed and echo was hardwired
to false. We do not know whether equivalent capability is easily accessible under VMS.

doSys routine—The body of doSys was replaced with the single line
call LIB$Spawn(tail)

doHelp routine—The body of doHelp was removed, and code to print a warning message was
substituted.

The following changes were made in the file interface modules:

Direct access opens—The direct access and record length specifications were removed from the open

- rry 1 Yy - _m

Block size specifications—The block size specifications were removed from the open statements in
olRascl and oWascl.

Rapid file positioning—The calls to fizedLen and fSsec from fSunc2 were removed, making it always
call fSgen; firedLen, fSsec, and nRecs were climinated.

The following changes were made in the GetData main program and the routines specific
to GetData:

Command line processing—The call to $§CheckArgs in the GetData main program was removed.

Performance testing code—The calls to OS$ReadCpuTimer and $SwitchVar were removed from
copyl. The associated variables and code were also removed.

Default format—The default format was changed from cmp2 to unc? in routine p Write.

3.6.2 UNIX Conversion— This section describes conversion of the code to run on an IRIS
(Silicon Graphics, Mountain View, California) workstation using the f77 compiler running under ATT
UNIX Version V (AT&T Bell Laboratories, New York). Most of the conversion should also apply to
other UNIX systems. In a few places, the converted code calls UNIX system functions. The details of
how to call UNIX system functions from FORTRAN vary from system to system. None of the system
calls are critical to the basic function of GetData; they can be omitted if they are hard to call on your
system.

The following changes were made throughout the code:
include syntax—The syntax of all include statements was changed to
$ include whatever.com
as accepted by the UNIX compiler.
Unit numbers—The unit numbers for terminal input and output were changed to 0.
implicit none—All implicit none statements were removed.

readOnly parameter—The readOnly parameter was removed from several open statements. We
know of no equivalent substitute.

The following changes were made in the rem.f file:

booboo routine—The calls to ELXSI intrinsics were removed from the code in booboo. We do not
know of any appropriate substitutes.

clock routine—The calls to date and time were removed from the clock subroutine. Blank strings
are returned. UNIX does provide functions to get appropriate strings, but it was too much work
to figure out how to use them from FORTRAN on the IRIS.

String functions—The “commented out” machine-independent versions of the code were used in
routines loCase, upCase, and strEq. UNIX provides system calls for the upCase and loCase
functions, but the complications of using them from FORTRAN probably make them less efficient
than the machine-independent versions.

sysErr routine—Subroutine sysErr was changed to call the perror system function.
The following changes were made in the getCmd.f file:

File kind intrinsics—The calls in inCmd to ELXSI intrinsics were removed, and echo was hardwired
to false. Equivalent capability probably exists under UNIX, but we did not investigate it.

doSys routine—The body of doSys was replaced with a call to the UNIX System function.

doHelp routine—The body of the doHelp routine was removed, and code to print a warning message
was substituted..

The following changes were made in the file interface modules:

Direct access opens—The direct access and record length specifications were removed from the open
statements in oRascl, oWascl, and oWunc?2.

Block size specifications—The block size specifications were removed from the open statements in
oRascl and oWascl.

Rapid file positioning—The calls to fizedLen and fSsec were removed from fSunc2, making it always
call fSgen; firedLen, fSsec, and nRecs were completely eliminated.

The following changes were made in the GetData main program and the routines specific to GetData:

Command line processing—The call to $CheckArgs in the GetData main program was vemoved.

Performance testing code—The calls to OS$ReadCpuTimer and $SwitchVar were removed from
copyl. The associated variables and code were also removed.

Default format— The default format was changed from c¢mp2 to unc? in routine p Write.

Appendix A—Help Files

This appendix consists of listings of the help files installed on the Ames-Dryden Elxsi computer. Some
of the details are specific to this installation of the program and would not apply to other sites.
For instance, there are numerous references to specific file path names in /user/maine. The sample
subroutines mentioned in some of these help files are listed in appendix B. The samples of file formats
are listed in scction 3.4.

A.1 Program Help File

getData [cmd] -- select time history data times and signals

USAGE
[/user/maine/commands/]getData

DESCRIPTION
This program selects signals and time intervals from time history
data files. It can also be used to copy time history data files to
different file formats. The program is designed for interactive
use.

The program can apply time skews, interpolating data to the output
times using either linear interpolation or hold-last-value
algorithms. Input can be merged from multiple asynchronous files.
There is also provision for calculated parameters, defined by
user-supplied subroutines. Calculations consisting of simple
linear combinations of signals can be defined interactively without
writing Fortran code.

The program resides in the directory /user/maine/getData/commands,
with an alias in /user/maine/commands. The useMaine command
facilitates access to getData.

There is a full internal help facility, which covers the commands
within getData.

EXAMPLES
/user/maine/commands/useMaine
getData
read infile
signals &
alpha=alphaf beta=betaf &
p=x12345
write outfile unc2
copy times 7:30:15:000 - 7:31:0:000 dt=.1
quit

getData
read infile
signals +all
write outfile

copy
quit

CAVEATS
The order of the read, signals, write, and copy commands is
important. They should be in this order.

ERROR HANDLING
The program attempts to recover from all errors. Such mundane
errors as exceeding dimension limits, or giving names of
non-existant files or signals are all caught. The program should
not crash, regardless of what junk you feed it for commands.
Infinite or NaN quantities in the data may crash it. If you
succeed in crashing the program in any other way, please let me
know.

SEE ALSO
bindGetData, fileInterface, uncl, unc2, cmp2, useMaine,
internal help

IMPLEMENTATION
Fortran program.

The time history data file interface routines are used to read and
write the data files. See the help topic filelnterface for
discussions of the file interface subroutines. You must write
customized versions of these routines to use getData on data files
not supported by the standard ones.

KEYWORDS
GetData, select signals/intervals for time history data files,
time skews/interpolation/thinning/(sample rates/intervals)

AUTHOR Richard Maine - NASA Dryden
VERSION 3.3.1
DATE 3 Sept 86

A.2 Command Help Files

A.2.1 Copy Command—
copy [cmd] -- copy data from input to output file

USAGE
copy
time[s] = hh:mm:ss:mmm - hh:mm:ss:mmm
dt=<dt> thin=<thin> nTimes=<nTimes>

PARAMETERS

time
Time interval to be copied. The default time interval is 0-24
hours. If time is specified, all 8 time fields are required,
even if they are 0. The time fields can be delimited by blanks,
colons, dashes, slashes, or periods. Note that the last field of
time is milliseconds, rather than decimal seconds, regardless of
the delimiter used; thus 12:00:00.5 represents 5 milliseconds
past noon - not half a second.

dt
Output sample interval. If a non-zero dt is specified, the
output times will be at intervals of exactly (to floatting point
precision) dt. If all input files drop out for a period of
longer than 1 second, the corresponding times will be dropped out
of the output file and a message will be printed. If dt is O or
is unspecified, the output times will be determined by the thin
parameter. It is illegal to specify both dt and thin.

thin
Thinning factor for output. If thin is specified, the output
times will exactly equal the input times of the first file
specified on the most recent read command, thinned by the
specified factor. The input file skew is included in this
calculation. The default for thin is i, which results in no
thinning. It is illegal to specify both dt and thin.

nTimes
Maximum number of time points to write. If nTimes is non-zero,
the copy operation will stop after that number of output times
are written (or at the requested end time, whichever comes
first). This is an easy way to look at the first few time points
on a file. Anything beginning with nt is accepted as an
abbreviation. If nTimes is O, it is ignored. The default is O.

DESCRIPTION
This command requests that a time interval be copied. The input
and output data files, and the signals must have been previously
specified. For multiple time intervals, use multiple copy
commands .

All input data will be interpolated to the output times using
either linear interpolation or hold-last-value as specified by the
methods command.

EXAMPLES

copy
copy times 7:30:15:000 - 7:31:0:000 dt=.1

copy times=7 30 156 0 7 31 0 0 thin=2
copy nTimes=5

CAVEATS
For most applications, the time segments should be in order of
increasing time and should not overlap. Many programs can not deal
well with files having unordered times. Future versions of getData
may disallow writing such files.

ERROR HANDLING
There will be an error message whenever the times from an input
file are out of order or when out-of-order times are written to the
output file.

SEE ALSO
read, signals, write, show, skew, methods

KEYWORDS
copy command,
copy data,
set/specify/select time/(sample interval/rate)/dt/
(thinning factor)/nTimes

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.2
DATE 17 Nov 86

A.2.2 Do Command—
do [cmd] -- execute a command file

USAGE
do <command_file_name>

DESCRIPTION
The do command causes the program to begin taking command lines
from a text file. The file can contain any command that could be
entered from the terminal, except for nested do commands (which are
disallowed to avoid possible recursion problems). Following
execution of all commands in the file, control returns to the
terminal (unless the command file included a quit or other command
that terminates the program). Command files are appropriate for
regularly-used long command lines or series of command lines.

Note that only the actual command lines are obtained from the
command file. Any other input required for the commands is still
obtained from the terminal.

The following details of command line entry also apply to commands
entered directly from the terminal, but are particularly useful in
command files. To continue any command to another line, end the
first line with an ampersand (&). Commands can be continued in
this way to any number of lines, limited only by the total command
length limit of 4096 characters. The end-of-line counts as a blank
for command parsing purposes. A comment is indicated by beginning
the command with two dashes (--). A completely blank command is
also a legitimate comment. Comments are not allowed between lines
of a continued command.

EXAMPLES
do latr.fit
do /user/maine/someFile

ERROR HANDLING
If the specified command file can not be read (usually because you
gave the wrong name), an error number is printed and control
returns to the user. The "sys files" command can be useful in this
situation to verify the file name.

SEE ALSO
sys

IMPLEMENTATION
Internal command within the getCmd subroutine.

KEYWORDS
do/execute a command file,
command line form/syntax, continuation lines, comment lines

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1
DATE 1/23/85

A.2.3 Help Command—
help [cmd] -- help command

USAGE
help [<command_name>]

DESCRIPTION

Gets help on commands in this program. This version of help
is set up to look only for help on this program. It also
accepts all arguments described in the system helpfile (do
"sys help help").

| TO GET A LIST OF THE AVAILABLE COMMANDS,

| DO "HELP COMMANDS".

| Some programs also have helpFiles for variables or topics,
| which you can find with "help variables" or "help topics".

EXAMPLES
help quit

SEE ALSO
sys, sys help help

IMPLEMENTATION

Calls the system help utility, with the search rule set for
this program.

KEYWORDS
help command

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1
DATE 1/22/85

A.2.4 Method Command—
method [cmd] -- define interpolation methods

USAGE
method inSigi=methl inSig2=meth2 ...

PARAMETERS
inSig?
Name of an input or filtered parameter.

meth?
Interpolation method for the specified input signal. Allowable
interpolation methods are hold (meaning hold-last-value) and
interpolate (meaning linear interpolation). Anything beginning
with h or i will be accepted as an abbreviation.

DESCRIPTION
This command specifies the methods to be used for interpolating
signals to common output times. This command overrides, on a
signal-by-signal basis, the default interpolation method for each
file specified in the read command. Any signal not mentioned in a
method command uses the default interpolation method specified in
the read command; if the read command did not specify the method
either, hold-last-value interpolation is used.

The interpolation method is applicable only to input or filtered
signals. Calculated functions and output parameters are always
evaluated with the interpolated data at the output times.

All method data is discarded whenever a read command is executed.
Any applicable methods must be re-entered, even if they are the
same as those in effect for the previous files.

Anything begining with meth will be accepted as a synonym for the
method command.

EXAMPLES
meth alpha=h beta=interp &
p=hold-last-value

CAVEATS

Hold-last-value interpolation is far more efficient than linear
interpolation. For input files that have no active signals with
skews or linear interpolation, the program uses a special-case
fast algorithm. As soon as an input file has a single active
signal skew or linear interpolation, the special algorithm no
longer applies for that file and the performance becomes
substantially worse.

Linear interpolation is meaningless for parameters such as digital
words. The program has no idea which parameters are in this
category; it will obediantly trash such parameters if you ask it
to.

ERROR HANDLING
Methods not beginning with h or i will cause an error message,
leaving the previous method specification (if any) unchanged.

SEE ALSO
read, skew, show, copy

KEYWORDS
method/meth command,
specify/set/select/define/change interpolation/synchronization/sync
methods

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 29 Jun 87

A.2.5 Quit Command—
quit [emd] -- exit the program normally

USAGE
quit

DESCRIPTION
Terminates the program and returns to the operating system.

SEE ALSO
sys

KEYWORDS
quit command,
quit/exit/terminate the program

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1
DATE 1/23/85

A.2.6 Read Command—
read [cmd] -- specify input data file(s)

USAGE
read fileName
fSkew=<file_skew>
+hold

PARAMETERS
fileName
Name of the input file. This is a required parameter.

fSkew
Time skew to be added to all times on this file, in seconds.
This skew is independent of the individual signal skews. If
signal skews are specified, they are in addition to the file
skew. If all signals in a file are to be skewed by the same
amount, it is FAR more efficient to specify this as a file skew
than to specify all the individual signal skews with the skew
command. The file skew may be arbitrarily large and has no
impact on efficiency. The default is 0.

+hold(-interpolate)
Default interpolation method for signals in this file.
Hold-last-value interpolation is specified by +hold; linear
interpolation is specified by +interpolate. This default can be
overridden on a signal-by-signal basis using the method command.
If unspecified, the default is +hold.

DESCRIPTION
This command specifies the data files to be read. It also
specifies some details about how the files will be processed.

The read command does not actually read any data from the files; it
just opens the files and prepares them for reading. The actual
data must subsequently be read using the copy command.

Each execution of the read command first closes all previously open
input files. To merge data from multiple input files, you must
specify them as a list of files in a single read command. The list
syntax requires you to specify the name of the each file, followed
by all parameters relevant to the that file. A comma indicates the
end of the specifications relating to each file.

Any previously-defined output signal definitions remain unchanged
when a read command is executed. The program will relink the
output signals to the available inputs on the new input files. Any
previously open output data file remains open. This allows
convenient splicing of time segments from multiple input files onto
a single output file. A typical command sequence to do such
splicing would be:

-- copy relevant times from the first input file.

read filel

signals +all

write outFile

copy time 1:0:0:0-2:0:0:0

-- copy data from second input file to same output file.
read file2

copy time 2:0:0:0-3:0:0:0

All previous information about skews and interpolation methods is
discarded wvhen a read command is executed. These data must
therefore be respecified even if they are the same as for the
previous file(s).

EXAMPLES
read datafile
read filel fSkew=.05, file2 fSkew=-.02, file3

ERROR HANDLING
Any errors in parsing the command or opening the files will cause
all the input files to be closed.

If any signals needed for computing the currently-defined output
signals are missing, an error message will be printed and the
corresponding output signals will be set to 0.

SEE ALSO
signals, write, copy, show, sys files

KEYWORDS
read command,
specify/set/select input data file
names/skews/ (syncronization/interpolation methods)

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 3 Sept 86

A.2.7 Show Command—
show/list [cmd] -- list signal names

USAGE
show

or
list

DESCRIPTION
Shows the currently-defined input, calculated and output signal
names. Calculated signals that require unavailable inputs are
shown in parens. Show and list are synonyms.

EXAMPLES
show

CAVEATS
The list tends to be long and scroll off the screen. Use ~s/°Q to
pause and restart it. There is no way to abort the list short of
aborting the program. Probably ought to provide parameters to ask
for specific portions of the data. This command will probably be
expended in the relatively near future, possibly before production
release.

SEE ALSO
signals

KEYWORDS
show/list command,
show/1list selected input and output signal names

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 27 Aug 86

A.2.8 Signals Command—

signals [cmd] -- define signals to be written

USAGE
signals [+all|+add|+delete] outSigi[=expri] outSig2[=expr2]

PARAMETERS
At most one of the switches +all, +add, or +delete may be specified
in a single signals command. Furthermore, this specification must
be the first argument of the command or it will not be recognized.
If none of these switches is specified, the specified signals
completely replace any previous list.

+all
If +all is specified, the output signal list will be set to
consist of all currently available signals. There is no
computation or renaming of signals. Any subsequent arguments
will be ignored if +all is specified.

+add
If +add is specified, the specified signals are added to the list
established by previous signals commands.

+delete
If +del is specified, the specified signals are deleted from the
list established by previous signals commands. Anything begining
with +del is accepted as an abbreviation. If +delete is
specified, the expressions in the signal list are irrelevant.

outSig?
Each outSig parameter defines the name of a signal to be written.
Signal names must not contain commas, equal signs, quotes (single
or double), parentheses, or embedded or leading blanks. It will
probably simplify your life if you also avoid the characters ’+’
and ’-’ and if you start each variable name with a letter, but
these suggestions are not enforced. Signal names are limited to
16 characters. The outSig names can not be quoted.

expr?
The expr parameters are expressions defining the computation of
the output signals. Expressions can consist of up to § terms in
the forms:
<sign><constant>
<sign><signal-name>
<sign><constant>*<signal-name>
where
<sign> is + or - (may be omitted from first term)

<signal-name> is the name of an input or calculated signal.
(This includes only calculations defined by calculated
function subroutines, not calculations defined by the signals
command) . Signal names follow the same rules as for output
signals. Signal names may be enclosed in quotes (either
single or double quotes, but they must match). If a signal
name .contains ’+’ or ’-’ characters, or if it starts with a
digit or dot, then it must be enclosed in quotes.

If the expression is omitted, the output signal is assumed to be
equal to an input or calculated signal of the same name (enclosed

in quotes).

DESCRIPTION
This command defines the names of the signals to be written and how

they are to be computed. The computations allowed include
selection or renaming of an input signal, plus simple linear
combinations of input signals. In this context, input signals
include those obtained from filters or calculated functions.

Anything begining with sig will be accepted as an abbreviation for
the signals command.

At least one signals command must precede the first write command.
You should not normally use the signals command while an output
file is open. The signal names on an output file are determined by
the signal selection effective at the time the write command for
that file is issued. Any subsequent signals commands will splice
different signals onto the same channels of the output file; this
has subtle implications and is appropriate only for special
applications. A warning message will be issued if you attempt
this.

EXAMPLES
signals +all
sigs tadd pq r
signals +del alpha gq-bar
signals &
alpha-c="alpha-f"-3.125%q tap3="003" &
q-bar=x12345 deAvg=.5%"de-left"+.5*"de-right"

CAVEATS
The expression parser is quite crude; do not be confused by its
similarity to Fortran syntax. It can not handle any forms other
than those listed. For instance, the multiplying constant must
always precede the signal name instead of following it. Exponent
form (e.g. 1.e-3) is not accepted for constants. Parentheses are
not recognized. There can be no blanks in an expression, except
around the equals sign.

The parser does not strictly enforce the rules for signal name
syntax in all contexts. You can sometimes get by with expressions
not meeting the stated syntax rules. For instance 1*3 is
interpreted as a constant 1 times a signal named 3, even though the
3 is not quoted. Such expressions are confusing and are not
guaranteed to work with future parsers. I advise avoiding them.

The only optimization of the expressions is a special case for
expressions consisting of a single signal name with the multiplying
constant omitted or equal to +1.0. (The large majority of
expressions have this form). Expressions such as 2+2 will work,
but the addition will be repeated every time point, which is a
horrible waste of computer time.

BUGS
The signal name 1.0 is reserved for internal use. If you have an
input signal with this name, references to that input signal will
not give the correct results.

The program does not currently detect the occurance of multiple
output signals of the same name, but files with such duplicate
names may cause difficulties in your future life. If there are
multiple input signals with the same name, there is no way to
specify which one you want; the result is not guaranteed to be
repeatable.

ERROR HANDLING
Il1-formed expressions will be give an error message and substitute
a blank expression, which will give the value O.

If any of the signals used in the computation of an expression is
unavailable, an error message will be printed and the value 0 will
be used for that signal. Although currently inactive, the
expression will be remembered and may become valid after a
subsequent read command.

SEE ALSO
read, write, show, copy

KEYWORDS
signals/sigs command,
specify/set/select/define/change/rename signal/channel names
and computations/calculations

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 20 Nov 86

A.2.9 Skew Command—
skew [cmd] -- define input signal skews

USAGE
skew inSigi=skewl inSig2=skew2 ...

PARAMETERS
inSig?
Name of an input or filtered parameter.

skew?
Time skew for the specified input signal, in seconds. This
skew is added to the time tag of the measurement. Thus a
positive skew value adds lag to the signal (possibly to
compensate for a lead in the raw data). This skew is in
addition to any file skew specified in the read command.

DESCRIPTION
This command specifies the signal skews to be added to the time
tags of the input signals.

Note that skews can not be applied to calculated functions or
output parameters. Calculated functions and output parameters are
always evaluated with the skewed input data; thus calculated
functions can be indirectly skewed by skewing all of their input
signals.

The output data is always written in frames of data interpolated to
common times. This interpolation is done either by linear
interpolation or hold-last-value, as specified by the method
command. Note that a skew smaller than the sample interval can
sometimes have no net effect on the output for signals using
hold-last-value interpolation.

All skew data is discarded whenever a read command is executed.
Any applicable skews must be re-entered, even if they are the same
as those in effect for the previous files.

Anything begining with skew will be accepted as a synonym for the
skew command.

EXAMPLES
skew alpha=.04 beta=-.03 &
p=.01

CAVEATS
There are significant performance penalties for processing skews,
and these penalties become larger as the skew becomes larger. For
input files that have no active signals with skews or linear
interpolation, the program uses a special-case fast algorithm. As
soon as an input file has a single active signal skew or linear
interpolation, the special algorithm no longer applies for that
file and the performance becomes substantially worse.

There are also limits to the magnitudes of signal skew that can be
applied. These limits are functions of several factors and can be
increased if needed (but this will cause further performance
degradation). There will be a warning message if you exceed the
limits.

These limits do not apply to the file skews specified in the read
command. The file skews can be arbitrarily large and have no
performance implications. Thus, if the same skew is to be applied
to all signals in a file, it is far more efficient to specify it as
a file skew than as individual signal skews.

It is easy to get the sign of the skew wrong. If you want to
skew the data to correct for a lag in the sensor, you must
specify a negative skew.

ERROR HANDLING
I1l-formatted skew values will cause an error message, leaving the
previous skew (0 if never specified) unchanged.

SEE ALSO
read, method, show, copy

KEYWORDS
skew command,
specify/set/select/define/change signal/channel time skews

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 29 Jun 87

A.2.10 Sys Command—
sys [cmd] -- execute a system command without exiting program

USAGE
sys <system_command.line>

DESCRIPTION
Sys allows the execution of any system command line from within the
program. The command line need not be quoted. Common uses include
the system files and to commands. The synonym system (or anything
else beginning with sys) is accepted.

EXAMPLES
sys files
sys to monty "I am busy now"

ERROR HANDLING
If the command fails, any error messages will be printed and
control will be returned to the program.

IMPLEMENTATION
Calls $Shell, with appropriate error handling.

KEYWORDS
run a system command, sys command

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1
DATE 1/23/85

A.2.11 Write Command—
write [cmd] -- specify output data file name

USAGE
write [filename] [format]

PARAMETERS

fileName
Name of the file to be written. If no name is supplied, the

previous output file will be closed without yet opening a new
one.

format
File format to be used. Currently accepted values are unc2,

cmp2, ascl, and lisl. If omitted it defaults to cmp2.

DESCRIPTION
This command specifies the data file to be written. It closes any

previously open output data file and opens a new file with the
specified name and format.

The write command does not actually write any data to the output
file; it just opens the file and prepares it for writing. The
actual data must subsequently be written using the copy command.

The signals to be written must have been specified before executing
the write command. Any subsequent execution of a signals command
will splice different signals onto the same channels of the output
file; this is appropriate only for special applicatioms.

The interpretation of the format parameter depends on the write
routines. It is possible for the write routines to ignore this
parameter or change its interpretation. With the default write
routines, the possible values are:
unc2: uncompressed 2 format.
cmp2: compressed 2 format.
ascl: ascii 1 format. (primarily for tape transfer to other
machines).
lisi: listing format. (for screen or printer listings only;
no read routines for this format are supported).

Note that you can list directly to the terminal screen by
specifying $stdout (Elxsi-specific) as the filename. The resulting
display, however, will not stop at the end of each screenful; you
must use ~S/-Q to start and stop the display if desired. Only ascl
and lisi formats will work to the screen (the others are binary
formats); the lisl format is more readable.

EXAMPLES
write dataFile
write dataFile unc2
write $stdout lisl

CAVEATS
the signals command must have been executed prior to the write
command in order to specify the signal names to be written.

ERROR HANDLING
If no output signals are defined, or if any errors in parsing or
execution occur, the output file will be closed.

SEE ALSO
read, signals, copy, show, sys files

KEYWORDS
write command,
specify/set/select/close output data file name

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 3 Sept 86

A.3 Topic Help Files
A.3.1 Calculations—
calculations [topic] -- calculated functions in getData

DESCRIPTION
This helpFile gives an overview of calculated functions in

getData.

There are 3 different means of defining calculated functions
in getData: the signals command, the calculated function
subroutines, and the filter subroutines.

The signals command allows you to define some simple
calculations interactively, without writing Fortran code. You
can interactively define calculations that are simple linear
combinations of input signals. This includes such common
functions as averages, differences, sign changes, plus general
bias and scale factor correctioms.

These calculations can use input file signals, filtered
signals, or calculated function signals. A calculation
defined in the signals command can not use another calculation
defined in the signals command. These calculations are
performed immediately before writing each output record; they
have no intrinsic sample rates. The input signals used in the
calculations are all skewed and interpolated to the output
times before the calculations are performed. For details, see
the helpFile for the signals command.

Calculations more complicated than supported in the signals
command must be implemented by Fortran subroutines. Up to §
independent calculated function modules can be simultaneously
installed (this number can be easily increased if needed). The
calculated function modules are called CF1 to CF5. Each
calculated function module normally implements multiple
calculated functions.

Each calculated function module can use signals from the input
files, the filter module, and lower-numbered calculated
function modules. It can not use signals from higher-numbered
calculated function modules or signals defined in the signals
command. The calculations are performed immediately before
writing each output record; they have no intrinsic sample
rates. The input signals used in the calculations are all
skewed and interpolated to the output times before the
calculations are performed.

Each calculated function module is defined by a set of 3 Fortran
subroutines, called allocateCFx, activateCFx and doCFx, where
the x is replaced by the calculated function module number
(1-5). For details, see the helpFiles for these routines. (The
helpfile names do not include the x suffixes).

Filters can not be conveniently implemented in the normal
calculated function modules because digital filters are
inherently linked to specific sample rates, whereas the normal
calculated function modules do not have inherent sample rates
and may be called at different rates, depending on the requested
output. Therefore, separate provision is made for filtered
signal computations. Only a single set of filter routines is
currently allowed; this set of routines can support multiple
filters.

The filters can use only signals directly from an input file.
Other calculated functions can not be filtered (though they
can use filtered inputs, which normally achieves about the
same effect). The input signals used for the filter are raw,
without skew corrections or interpolation. The filtered
result may be skewed and interpolated in the same way as
signals read from the input files. (Normally, you would
expect to use a different skew for the filtered signal than
for the raw signal anyway).

The filter interface conveniently allows only recursive causal
filter forms; i.e., the filters can depend only on prior and
current data, not on future data. There is no easy way to run
forwvard/backward filters or smoothers. Note that you can skew
the filtered result to approximately compensate for the group
delay of the filter.

The filters are defined by the subroutines allocateFilt,
activateFilt, reMapFilt, and doFilt. For details, see the
helpFiles for these routines.

USAGE
The interactively-defined calculated functions are defined and
accessed through the signals command.

The calculated functions defined by calculated function modules
or the filter module are accessed interactively by signal name
in the same manner as the input signals. The only difference is
that you can not specify skews or interpolation methods for
signals defined by calculated function subroutines; the
calculations are done after all skews are applied. You can
specifyv skews and interpolation methods for filtered parameters.

EXAMPLES
See the signals helpFile for examples of interactively defined
calculations.

Source for a sample set of calculated function subroutines is
in the files sample.CF1.f and sample.CFl.com in the
/user/maine/getData.3.1/source directory.

Source for a sample set of filter subroutines is in the files
sample.filt.f and sample.filt.com in the
/user/maine/getData.3.1/source directory.

CAVEATS
The interface to the filter module is not as '"clean" as I would
like it to be. Unfortunately, performance requirements forced
some compromises here. If I get some better ideas, this
interface might change further in the future. The interface to
the calculated function modules is much more "gsolid." Luckily,
there seem to be only a few users of the filter module.

SEE ALSO
signals [cmd]
allocateCF,activateCF,doCf [sub]
allocateFilt,activateFilt,reMapFilt,doFilt [sub]

KEYWORDS
calculations topic,
(calculated function)/filter subroutines

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 8 Sept 86

A.3.2 CPUTime—
cpuTime [topic] -- cpu time estimates for getData on Elxsi

DESCRIPTION
This helpFile gives cpu time estimates for getData.3.1.1

running on an Elxsi 6400.

Unless otherwise specified, data are based on tests with
optimized cmp2 format read/write routines and with optimized
doCopy routines in getData. There is relatively little
difference between cmp2 and unc2 format times in most cases.
All times are quoted per frame (time point). Times do not
include setup overhead that is not repeated each frame.

Overhead Costs.
.2 ms, with major parts as follows:
syncTo: .05 ms
doCalcs: .03 ms
mapOut: .02 ms
nextT: .03 ms

------------------- Input file positioning costs -====--=-=---
For cmp2 format input files, there is a significant cost for
positioning input files to the begining of the interval to be
processed. This cost is

.25 ms per time point skipped, plus

2 us per compressed data value skipped.
You can estimate the number of compressed data values in a
file as about one third of the file size in bytes. Then
multiply this by the fraction of the file you are skipping
over.

The file positioning cost for unc2 format files is negligable.
I have not measured it for ascl format files, but it will be
very large.

---------------------------- Input costs =-=---=----=--===-=---=
For each input file, there is an initial cost of

.6 ms
For each signal on an input file, whether used or not, add

9 us

This figure may vary from around 5 to 15 us with cmp2 files,
depending on the compression. The fastest reading is from
highly compressed files. The figure quoted is a typical
average.

If the input file is ascl format, add

.15 ms per signal + .4 ms per line

(3 signals on the first line, 4 on subsequent lines.)
For each signal used, independent of the format, add an
additional

6 us

-------------------------- Output costs =-------—-—--=----=-==--
There is an initial cost of
.6 ms
For each signal written, add
8 us
This figure may vary from around 5 to 15 us with cmp2 files,
depending on the compression. The fastest writing is to
highly compressed files. The figure quoted is a typical
average.
If the output file is ascl format, add
.15 ms per signal + .5 ms per line
(3 signals on the first line, 4 on subsequent lines.)
If the output file is 1lisl format, add
.25 ms per signal + .4 ms per line
(5 signals on each line)

------------------------ Processing costs -----------<--------
For each signal used, also add
6 us, divided as follows
syncTo: 4 us
mapOut: 2 us
Depending on precisely how the signal is used, some of
these components may not apply.

If ANY used signal on an input file has a non-zero skew or
uses meth=interp, then add
25 us for every used signal on that file.

For each used signal with meth=interp, add
S us

For each skewed signal, add
11 us per time point or fraction of a time point of skew

For each output calculation term specified in the signals
command, add

10 us
This need not be added for the first term of each signal,

provided that term has no multiplier. Examples:
outsig=insig (add nothing)
outsig=2*insig (add 10 us)
outsig=insig+3 (add 10 us)
outsig=.5%insigl+.5*insig2 (add 20 us)

I have not done time testing for calculated function routines.

-------------------------- Filter costs ----=====-===--=c-------
Filter costs, of course, depend heavily on the specific filter
implementation. The following estimates are for a typical
filter consisting of a 3rd order lowpass plus a notch. The
figures are based on tests with the optimizer used on the
filter routines.

For having the filter routines installed in the program,
whether used or not, add
40 us for each input file that has filters defined

For each filter used, add
50 us

A filter does not count as a signal read from an input file;
however, the unfiltered signal must be read from the input
file in order to be filtered. The input times for the needed
unfiltered signals must therefore be included. The program
implementation also forces both the filtered and unfiltered
signal to be processed by syncTo, even though the unfiltered
signal might not really need this processing.

An indirect cost of filtering is that filtered signals usually
compress very poorly. Poor compression can increase the time
required for output (in addition to the rather obvious
increase in the file size).

EXAMPLES
Read 4 signals from a cmp2 format file having 685 signals.
Write in cmp2 format. No skewing or interpolation. Copy all
16015 times from the file.

overhead .2 ms
input .6 ms + 685%9 us = 6.8 ms
output .6 ms + 48 us = .6 ms
processing 4#%6 us = .0 ms
total 7.6 ms * 16015 frames = 122 sec

Note that the large majority of the time of this example is
from the large number of unused signals in the input file.

CAVEATS
Times will vary somewhat as a function of the data, system

load and other factors not considered in the tests. The
estimates can not be trusted to better than about 10-20%; some

cases may vary more.

Any extrapolation of these estimates to other machines is at
your own risk.

KEYWORDS
cpuTime topic,
estimating cpu time for getData

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 19 Sept 86

A.3.3 FileInterFace—

fileInterface [topic] -- time history file interface routines

DESCRIPTION
This helpfile describes the time history file interface
modules. The time history file interface modules are meant to
provide compatable access to a variety of data file formats.
These modules are particularly oriented around flight time
history data files. A program using these interface modules
can be modified to read or write different file formats by
merely rebinding with different interface modules. No program
changes are required. The use of these interface modules thus
avoids the necessity to modify each program to access special
file types. A single specialized interface module can serve
for all programs designed to use these modules.

You can often get by without even rebinding, because there is
a file read module that automatically recognizes and reads
several formats, plus a file write module that will write in
any of these same formats.

Currently supported formats include:

unci

unc?2

cmp2

ascl

lis1

uncompressed 1 format. A simple format similar to
“mmle" format as used on the CDC. Used mostly for
compatability and for areas where simplicity of format
is an overriding factor. Support for this format is
limited and available only by binding in a special set
of read and write routines.

uncompressed 2 format. An improvement on uncl format,
which adds header information including signal names.
Fully supported.

compressed 2 format. A format using data compression.
The usual choice for large files. Fully supported.
Elxsi-specific.

ascii 1 format. Used mostly for tape transfer to other
systems. This format is inefficient both in file size
and access time. It is not recommended for internal
Elxsi use. Fully supported.

listing 1 format. Used only for screen and printer
listings. Fully supported for writing. No read
routines are supported for this format. The exact
details of the format are subject to change.

USAGE
The sequence of subroutine calls to write a file using the
time history file interface routines is as follows:
openW - to open the file for writing.
fWrite...fWrite - called repeatedly to write records.
closeW - to close the file.

The sequence of calls to read a file using the interface
routines is:
openR - to open the file for reading.
rSigs (optional) - to find names of the available signals.
sigsR or chansR (optional) - to specify the signal names or
channel numbers to be read.
rewR (optional) - to position the file at the first record.
fSeek (optional) - to position the file after a requested
time and read a record.
fRead - to read the next record on the file.

closeR - to close the file. (Can usually be safely omitted,
but is recommended).
The subroutines between openR and closeR can all be called any
number of times and in any order, except for rSigs. Some
versions may not perform as expected if rSigs is called after
any calls to fRead or fSeek.

LIBRARY
Jobs using a particular set of file interface routines must
bind in the object file containing the appropriate routines.
In addition, most of the interface libraries use subroutines
in /user/maine/lib/misc.lib.o.

The interface subroutines are in the directories
/user/maine/fRead and /user/maine/fWrite. The supported
fWrite object file is /user/maine/fWrite/auto.o. The
supported fRead object file is /user/maine/fRead/auto.o.
Source, but not object, code for some simpler, more portable
versions is also maintained.

CAVEATS
Most of the routines have dimension limits on the number of

allowable channels on a file. Typical current dimensions
allow up to 1000 channels per file. This can be easily
changed if required.

The routines are not set up conveniently to be called from
programs compiled with the +double switch. All floatting
point quantities are 64-bit precision, but integers and
logicals are only 32 bits. If you call these routines from
programs compiled with +double, you must explicitly declare
any integer or logical quantities used as arguments to be
integer*4 or logical*4.

SEE ALSO
particular subroutines and file formats

SUBROUTINES
A full set of read access routines includes:
openR,closeR,rSigs,sigsR,chansR,rewR.fRead, and fSeek.
A full set of write access routines includes:
openW,closeW,fWrite

KEYWORDS
time history data file read/write/access/interface
subroutines/routines,
openW,closeW,fWrite,
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek

AUTHOR Richard Maine -~ NASA Dryden
VERSION 2.1
DATE 12/27/85

A.3.4 Version—
version [topic] -- version 3.1 changes to getData

DESCRIPTION
GetData version 3.1 is now released. This is a major rewrite
of getData to add new capabilities, with large portions of the
program rewritten from scratch.

Everything relating to this version currently lives in the
directory /user/maine/getData.3.1. To access version 3.1, use
the command "/user/maine/commands/getData". To access the
bind shellfile for version 3.1, use the command
"/user/maine/commands/bindGetData".

USAGE CHANGES/INCOMPATABILITIES
As long as you are not using the new capabilities, the general
usage of the program is quite similar to that of the previous
version. There are some changes in detail, outlined in the
following. See the internal helpFiles for precise details.

The change that will most immediately affect everyone is in
the default for the signals command. In the prior version,
the output signals defaulted to all the signals available from
the first read command, which was often convenient but
occasionally awkward for read commands after the first. 1In
version 3.1, there are no output signals selected by default.
This means that a signals command is now mandatory. The
command ’signals +all’ will duplicate the effects of the
default in the previous version.

The ability to specify expressions for output signals means
that some signal names now cause ambiguity in some contexts.
In particular, signal names begining with a digit and signal
names containing "-" characters can cause problems; there are
numerous existing files with such signal names. You must
quote any such ambiguous signal names appearing on the right
side of the equals sign in the signals statement. If you do
not have any equals signs in the signals statement (i.e. if
you do not use it to rename signals), this change does not
affect you. See the signals helpFile for details.

Multiple files specified on a single read command must now be
separated by commas. Previously, blanks or commas were
acceptable. This change is to allow for some extra optional
syntax in the read command.

The dt parameter on the copy command now causes drastically
different behavior than before. If you specify dt, the output
file will now have exactly the specified dt, interpolating the
input data as needed. In the previous version, you could use
either the thin parameter or the dt parameter to specify
thinning (though there were some subtleties in the use of dt).
In the current version, you get quite different results from
specifying dt than from specifying thin. The thin parameter
still specifies simple thinning.

NEW CAPABILITIES
The most important new capabilities are time-skewing and
interpolating data. With these capabilities, getData can now
do essentially everything that the sync program could do.
Either linear interpolation or hold-last value interpolation
can be selected on a signal-by-signal basis. See the
discussions in the helpFiles on the new "skew" and "method"
commands, plus the added options in the 'read" command. Be
warned, however, that invoking this capability causes large
increases in the required computer time and memory.

Closely related to the interpolation capability is the new
capability to force the output file to have constant specified
sample intervals. The data are interpolated to the required
output times. This capability is important for some analysis
programs that can not handle data dropouts or other timing
irregularities. See the helpFile for the copy command,
particularly the dt parameter.

Another major new feature is the ability to define some simple
calculations interactively, without writing Fortran code. You
can interactively define calculations that are simple linear
combinations of input signals. This includes such common
functions as averages, differences, sign changes, plus general
bias and scale factor corrections. See the helpFile for the
signals command. More complicated calculations still require
Fortran coding.

There are 2 new switches in the signals command: +all and
+delete. These allow such things as the much-requested
capability to change a single signal name without also
entering the entire list of unchanged signals.

The program is significantly faster (except when the skew and
interpolation options are used) in some cases. There is an
overall speedup from the use of the optimizer. (See the
caveats below). This typically seems to gain about 20-30%.
There have also been some algorithm changes that significantly
speed up cases where a small number of parameters are being
read from a file with many parameters. The speedup is
sometimes as large as a factor of 2 in extreme cases. I
should note that it is still far slower than reading the same
parameters from a smaller file. Files with more than one or
two hundred parameters are inefficient and likely to remain
so, but the new algorithm reduces some of the efficiency
penalty. (You might consider splitting up such files).

SUBROUTINE INTERFACES
The interface to the calculated function subroutines has
changed for two reasons. First, the old interface caused
unacceptable performance penalties for the skewing and
interpolation options. The old interface provided no way for
the program to know what signals were actually needed, so all
available signals had to be skew-corrected and interpolated.

Second, as long as I was changing the interface anyway, I
added the capability to have multiple independent calculated
function modules installed at the same time. Thus, for
example, a user could add his own calculated functions in
addition to those defined and supported by the project.
Formerly, the easiest way to do this was to make 2 separate
getData runs, creating an intermediate file. (Sorry, this
capability does not apply to filters; only one filter module
can be installed in a single job).

The biggest effect is on the setupCalcs routines. Few changes
will need to be made in most versions of doCalcs. See the
"calculations" topic helpFile for details. There are sample
calculated function routines in the files sample.CF1.f,
sample.CF1l.com, sample.filt.f and sample.filt.com in the
directory /user/maine/getData.3.1/source.

DOCUMENTATION
This file is available within getData by typing "help
version". All internal helpFiles have been substantially
revised. HelpFiles have been added for the calculated
function subroutines. A written manual for this version will
be prepared "soon."

CAVEATS
Large skews can eat up prodigious amounts of computer time
with this version; please exercise appropriate constraint.

SEE ALSO
Internal helpFiles.

KEYWORDS
version topic,
getData version 3.1/3.1.1 changes

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 5 Sept 86

A.4 Calculated Function Subroutine Help Files

A.4.1 Subroutine AllocateCFz—
allocateCF [sub] -- locate signals for calculated functions

USAGE
call allocateCFx

DESCRIPTION
This subroutine defines and locates the signals used in the
calculated function routines. It also defines and allocates
the signals to be calculated. There is one allocateCFx
routine for each calculated function set, with x replaced by
the calculation set number (1 to 5). It is called before any
calls to activateCFx or doCFx. It may be called multiple
times in a single run if multiple read commands are executed.

An allocateCFx routine should have 4 sections, performing the
operations described below. Much of the actual work is done
in subroutines and functions called by allocateCFx. All of
the subroutines and functions mentioned are provided
independently of the user-written calculated function
subroutines.

AllocateCFx will need one or more common blocks to pass data
to subroutines activateCFx and doCFx. I suggest the common
block name /CFx/ for this purpose (with x replaced by the
calculation set number).

1. Declare a descriptive label (up to 60 characters) for the
calculation set by calling subroutine labelCalc. LabelCalc
has 2 arguments: the calculation set number and the label.
Example:

call labelCalc(1,’CF1 sample. Richard Maine. 12 Aug 86’)

2. Find all input signals needed for the calculations by
calling function sigChan. SigChan has one argument: the
signal name. It returns an integer channel number for the
signal. A channel number of O means that the signal was
not found. You should save these channel numbers in common
block /CFx/, as they will be needed by subroutines
activateCFx and doCFx. I begin the variable names for
these numbers with an "i" to remind me that they are input
signals, but no naming conventions are enforced. Example:

iDeR = sigChan(’deR’)
iDeL = sigChan(’deL’)
iQbar = sigChan(’qBar’)

3. Allocate channel numbers for all signals that are defined
by this calculation set by calling function calcChan.
CalcChan has one argument: the signal name. It returns an
integer channel number for the signal. A channel number of
0 means that the channel could not be allocated for some
reason (possibly dimension limits or a name conflict). You
should also save these channel numbers in common block
/CFx/ for use by subroutines activateCFx and doCFx. I
begin the variable names for these numbers with an "o" to
remind me that they are output signals, but no naming
conventions are enforced. Example:

oDe calcChan(’de’)
oDa = calcChan{(’da’)
oKeas = calcChan(’keas’)

4. Disable those calculations needing unavailable signals by
calling subroutine cantCalc. Test for a channel number of
0 to determine if a signal is unavailable. CantCalc has a
single argument: the channel number of the calculated
signal. CantCalc will set this argument to O and will put
parens around the signal name so that future calls to
sigChan will not be able to find it. Defining and then
disabling a calculation like this is preferrable to just
bypassing the definition because the user will be able to
see the signal name in parens, indicating that the
calculation is installed but is missing some required
inputs. Example:

if (iDeL.eq.0 .or. iDeR.eq.0) then
call cantCalc(oDe)
call cantCalc(oDa)

endif

if (iQbar.eq.0) call cantCalc(oKeas)

It is permissable to make multiple calls to cantCalc for the
same signal or for a signal that could not be allocated;
such redundant calls will have no effect.

NOTES
If any calculated function is used as an input to another
calculated function in the same CF routine, you must adhere to
the following conditions to correctly maintain the
interdependencies of the calculations. These conditions are
automatically fulfilled for calculated functions used as
inputs in higher-numbered CF routines.

To determine if a calculated result is available for use in
another calculation, you test for a non-zero channel number
for the former calculation. For this test to work correctly,
it must be after any calls to cantCalc for the former
calculation. For instance, the sequence:

if (oDe.eq.0) call cantCalc(oAlphaTrim)
if (iDel.eq.0 .or. iDeR.eq.0) call cantCalc(oDe)

is incorrect because oDe is tested before a possible call to
cantCalc for it.

EXAMPLES
The full text of the subroutines using the above examples is
in the files sample.CF1.f and sample.CF1.com in directory
/user/maine/getData.3.1/source.

CAVEATS
Dont forget to declare sigChan and calcChan to be integer;
likewise for the output channel number variables if you follow
my naming convention.

ERROR HANDLING
No special error treatment is needed other than that mentioned
in the above description.

SEE ALSO
calculations [topic]
activateCF, doCF [sub]

KEYWORDS
allocateCF/allocateCFx subroutine,
allocate channel numbers for (calculated functions)/calculations

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 29 Sept 86

A.4.2 Subroutine ActivateCFz—

activateCF [sub] -- activate needed calculated functions

USAGE
call activateCFx

DESCRIPTION
This subroutine activates calculated functions and their

inputs as needed for the following processing. There is one
activateCFx routine for each calculated function set, with x
replaced by the calculation set number (1 to §). It is called
after allocateCFx and before doCFx. It may be called multiple
times. It will always be called at least once between any
call to allocateCFx and subsequent calls to doCFx.

An activateCFx routine should perform the 2 operations
described below. All of the subroutines and functions
mentioned are provided independently of the user-written
calculated function subroutines.

ActivateCFx will need the channel numbers determined by
subroutine allocateCFx and placed in common block /CFx/. It
will also need to pass activation flags to subroutine doCFx
through this common block.

1. Determine whether each calculated function is needed by
calling function isUsed. IsUsed has a single argument: the
channel number of the calculated function. It returns a
logical true if the signal should be calculated; otherwise
it returns false. You should save these flags in common
block /CFx/, as they will be needed by subroutine doCFx. I
begin the variable names for these flags with an "use", but
no naming conventions are enforced. Example:

useDe isUsed(oDe)
useDa isUsed(oDa)
useKeas = isUsed(oKeas)

2. For each needed calculation, declare that its input signals
are also needed by calling subroutine setUsed. SetUsed has
a single argument: the input channel number. Example:

if (useDe .or. useDa) then
call setUsed(iDeR)
call setUsed(iDel)
endif
if (useKeas) call setUsed(iQbar)

It is permissable and normal to call setUsed multiple times
for the same signal. Although rarely useful, it is also
allowed to call setUsed for a signal that is not available;
such a signal will have been set to channel number 0, which
always contains the data value O.

NOTES
If any calculated function is used as an input to another
calculated function in the same CF routine, you must adhere to
the following conditions to correctly maintain the
interdependencies of the calculations. These conditions are
automatically fulfilled for calculated functions used as
inputs in higher-numbered CF routines.

You should not call isUsed for any signal until after any
possible calls to setUsed for that signal. The code for such
situations should parallel the code in allocateCF, but in
reverse order. For instance, if allocateCF has code like

if (iDeL.eq.0 .or. iDeR.eq.0) call cantCalc(oDe)
if (oDe.eq.0) then

call cantCalc(oAlphaTrim)

call cantCalc(oDeErr)
endif

then activateCF should have code like

uAlphaTrim = isUsed(oAlphaTrim)
uDeErr = isUsed(oDeErr)
if (uAlphaTrim .or. uDeErr) call setUsed(oDe)
uDe = isUsed(oDe)
if (uDe) then
call setUsed(iDeL)
call setUsed(iDeR)
endif

EXAMPLES
The full text of the subroutines using the above examples is
in the files sample.CF1.f and sample.CFl.com in directory
/user/maine/getData.3.1/source.

ERROR HANDLING
No errors should arise.

SEE ALSO
calculations [topic]
allocateCF, doCF [sub]

KEYWORDS
activateCF/activateCFx subroutine,
activate (calculated functions)/calculations

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 29 Sept 86

A.4.3 Subroutine DoCFz—
doCF [sub] -- evaluate calculated functions

USAGE
call doCFx (time,data,reset)

PARAMETERS
time: input, R*8
Time of this frame, in seconds.

data: i/o, R(*)*8
Data vector for this frame. Contains both input and output
signals.

reset: input, Lx4
Interval start flag. This flag will be true on the first
frame of each requested time interval; it will be false on
all other frames. This allows for the initialization of
counters, integrators, etc.

DESCRIPTION
This subroutine evaluates the calculated functions. There is
one doCFx routine for each calculated function set, with x
replaced by the calculation set number (1 to 5). It is called
after allocateCF and activateCFx. It is called one time for
each output frame (record).

DoCFx will need the channel numbers and activation flags
placed in common block /CFx/ by subroutines allocateCFx and
activateCFx.

For each defined calculation, doCF should check the activation
flag and perform the calculation if it is active. The data
vector has all the needed input signals, skew-corrected and
interpolated to the output frame time. The channel numbers
are the indices into the data vector. The calculation results
are placed in this same vector, with indices given by their
channel numbers. Example:

if (useDe) data(oDe) .5x(data(iDelL)+data(iDeR))
if (useDa) data(oDa) .5x(data(iDeL)-data(iDeR))
if (useKeas) data(oKeas) = 17.17#sqrt(max(data(iQbar),zero))

EXAMPLES
The full text of the subroutines using the above examples is
in the files sample.CF1.f and sample.CFl.com in directory
/user/maine/getData.3.1/source.

CAVEATS
Note that the data vector is dimensioned from O, not from 1.
The 0’th element has the value 0. Calculations that attempt
to use unavailable signals will get this O value instead. In
most cases, calculations that use unavailable signals will be
disabled, but it is permissable to activate such a
calculation, provided that O is an acceptable substitute input
value.

Channels in the data vector that were not activated by calling
setUsed are undefined. They are not guaranteed to have a 0
value or even a legitimate value at all. Don’t use them; if
you were going to, you should have called setUsed.

The values in the output signal channels of data are not
guaranteed to be retained between calls. If you need to save
an output value between calls, you must save it in a local or
common variable.

Do not put any result in the data vector unless you have
called isUsed for that signal and the result was true. Do not
assume that just because you called setUsed, that isUsed must
return true. (This assumption fails when setUsed is called
for an unavailable signal, which is unusual but is legal). If
you violate this rule, you might destroy the O value that is
supposed to be stored in channel 0, causing havoc with other
calculations. If two or more signals share much of the same
computation, you may choose to compute all of the outputs
whenever any of them are needed. However, do not place the
results in the data vector without individually checking
whether each result is used. For instance, don’t write code
like

if (uMach.or.uHp) then
call airData(data(iPs),data(iPt),data(oMach),data(oHp))
endif

Instead, do something like

if (uMach.or.uHp) then
call airData(data(iPs),data(iPt),mach,hp)
if (uMach) data(oMach) = mach
if (uHp) data(oHp) = hp

endif

ERROR HANDLING
There are no special provisions for error handling. The code
should do whatever checks are necessary to assure valid
execution, for instance to avoid taking the square roots of
negative values. The code should not abort, except as a last
resort. Error messages should also be avoided because they
could become voluminuous if repeated every time point.
Reasonable error fixups include limiting values to valid
ranges, setting special flag values or holding the previous
value.

If you have to have an error message, consider logic to print
it only on the first occurance in each time interval. The
reset argument allows implementation of such logic. For
example:

if (reset) warned = .false.

if (<condition>) then
<fixup result>
if (.not.warned) write (output,*) ’*** oops’
warned = .true.

endif

SEE ALSO
calculations [topic]
allocateCF, activateCF [sub]

KEYWORDS
doCF/doCFx subroutine,
do/perform/evaluate (calculated functions)/calculations

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 29 Sept 86

A.5 Filter Subroutine Help Files

A.5.1 Subroutine AllocateFilt—
allocateFilt [sub] -- locate signals for filter

USAGE
call allocateFilt (inF,inSig,nIn,maxOut,nOut)

PARAMETERS
inF: input, I*4
Input file number, from 1 to the maximum number of input
files allowed.

inSig: i/o, C(*)*16
Vector of signal names for this input file. On entry, it
has the names of the signals available on the file. On
return, the names of the filtered signals for that file
should be appended to the list.

nln: input, I*4
Number of signals available on this file. This is the
number of valid names in inSig on entry.

maxOut: input, I*4
Maximum number of filters that dimension limits allow for
this file.

nOut: output, I*4
Number of filters allocated for this file. This should
equal the number of names appended to the inSig vector.

DESCRIPTION
This subroutine defines and locates the signals used in the
filter routines. It is called before any calls to
activateFilt, reMapFilt or doFilt. It may be called multiple
times with the same input file number if there are multiple
read commands. Each call overrides any previous call for the
same input file number.

The allocateFilt subroutine should perform the following
operations.

1. Determine which filters go with this input file number.
This is done by searching the inSig vector for the names of
the unfiltered signals. The function sIndex (provided) is
used to do this search.

2. Append the names of the filtered signals for this file to
the inSig vector. Set n0Out to the number of filters
allocated. Do not exceed the dimension limit given by
max0ut.

3. Save the list of channel numbers for the unfiltered signals
(obtained from function sIndex) and the filtered signals
(allocated as you append to the inSig vector) in common
/filtCom/. Subroutines activateFilt, reMapFilt and doFilt
will need this data. Also, save a table that links the
input file number to the appropriate allocated filters.

EXAMPLES
A sample set of filter subroutines is in the files
sample.filt.f and sample.filt.com in directory
/user/maine/getData.3.1/source.

CAVEATS
Dont forget to declare sIndex to be integer.

ERROR HANDLING
You should probably put out an error message if signals
expected to be on the same file are not found together. You
should certainly put out a message if filters are omitted
because of the dimension limit. In either case, return
normally after allocating those filters that you can.

SEE ALSO
calculations [topic]
activateFilt, reMapFilt, doFilt [sub]

KEYWORDS
allocateFilt subroutine,
allocate channel numbers for filters

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 8 Sept 86

A.5.2 Subroutine ActivateFilt—
activateFilt [sub] -- activate needed filters

USAGE
call activateFilt (inF,iaOff)

PARAMETERS
inF: input, I*4
Input file number.

ia0ff: input, I=*4
Offset of this input file in concatenated data vector.

DESCRIPTION
This subroutine activates filters and their inputs as needed
for the following processing. It is called after allocateFilt
and before reMapFilt and doFilt. It may be called multiple
times. It will always be called at least once between any
call to allocateFilt and subsequent calls to reMapFilt or
doFilt.

An activateFilt routine should perform the 3 operations
described below. All of the subroutines and functions
mentioned are provided independently of the user-written
calculated function subroutines.

ActivateFilt will need the channel numbers determined by
subroutine allocateFilt and placed in common block /FiltCom/.

1. Use the table defined by allocateFilt to match the input
file number to the appropriate filters.

2. Determine whether each filtered signal is needed by calling
function isUsed. IsUsed has a single argument: the channel
number of the filtered signal within the concatenated
vector. To get this concatenated vector channel number,
you must add iaOff to the filtered channel number allocated
by allocateFilt. IsUsed returns a logical true if the
filtered signal is needed; otherwise it returns false.

3. For each needed filter, declare that its input signal is
also needed by calling subroutine setUsed. SetUsed has a
single argument: the input channel number within the
concatenated vector. As for the filtered signals, you must
get this concatenated channel number by adding ia0ff to the
unfiltered channel number found by allocateFilt.

EXAMPLES
A sample set of filter subroutines is in the files
sample.filt.f and sample.filt.com in directory
/user/maine/getData.3.1/source.

ERROR HANDLING
No errors should arise.

SEE ALSO
calculations [topic]
allocateFilt, reMapFilt, doFilt [sub]

KEYWORDS
activateFilt subroutine,
activate filters

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 8 Sept 86

A.5.3 Subroutine ReMapFilt—

reMapFilt [sub] -- reMap filters to compressed locations

USAGE

call reMapFilt (inF,iuMap)

PARAMETERS

inF: input, I*4
Input file number.

iuMap: input, I*4
Map from uncompressed locations to compressed locations.

DESCRIPTION

This subroutine reMaps the channel numbers used by the filter
subroutines. It is called after each call to activateFilt,
before any subsequent calls to doFilt.

The channel numbers initially allocated in allocateFilt
reserve channels for all signals available on each input file.
For efficiency, the actual processing uses a data vector
composed of only the signals needed, with the unused signals
omitted. The doFilt routine operates on this compressed data
vector.

Subroutine reMapFilt generates the channel numbers vectors
used in doFilt by reMapping the original channel number
vectors onto the compressed ones. The compressed vectors must
be distinct from the original ones instead of overwriting them
because reMapFilt can be called multiple times after a single
call to allocateFilt. The iuMap vector gives the compressed
channel number corresponding to each original channel number.
Signals in the original vector that are omitted from the
compressed vector are mapped to compressed channel O.

ReMapFilt will need the channel numbers determined by
subroutine allocateFilt and placed in common block /FiltCom/.
It will also need to pass the compressed channel numbers to
subroutine doFilt through this common block. The subroutine
performs the following operations.

1. Use the table defined by allocateFilt to match the input
file number to the appropriate filters. Then zero the list
of used filters

2. Check each filter defined for that file to see if the
channel number of its filtered signal maps to a compressed
channel of 0. (Checking the return from isUsed ought to be
equivalent, but you are about to use the mapped channel
number anyway, so checking the channel number is more
convenient and less prone to obscure errors). If the
channel number maps to O, skip that filter.

3. For each filtered channel that does not map to O, increment
the count of used filters for the file and save the mapped
channel numbers for the filtered signal and its unfiltered
source.

EXAMPLES
A sample set of filter subroutines is in the files
sample.filt.f and sample.filt.com in directory
/user/maine/getData.3.1/source.

ERROR HANDLING
No errors should arise.

SEE ALSO
calculations [topic]
allocateFilt, activateFilt, doFilt [subl

KEYWORDS
reMapFilt subroutine,
reMap filter channel numbers

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 8 Sept 86

A.5.4 Subroutine DoFilt—
doFilt [sub] -- evaluate filters

USAGE
call doFilt (inF,time,data,reset)

PARAMETERS
inF: input, I*4
Input file number.

time: input, R#8
Time of this frame, in seconds.

data: i/o, R(*)*8
Data vector for this frame. Contains both unfiltered and
filtered signals.

reset: input, L*4
Interval start flag. This flag will be true on the first
frame of each requested time interval; it will be false on
all other frames. This allows for the initialization of
counters, integrators, etc.

DESCRIPTION
This subroutine evaluates the filters. It is called after
allocateFilt, activateFilt and reMapFilt. It is called one
time for each record of each input file.

DoFilt will need the compressed channel numbers placed in
common block /FiltCom/ by subroutine reMapFilt. It should
perform the following operations.

1. Use the table defined by allocateFilt to match the input
file number to the appropriate filters.

2. For each filter in the compressed list for that file, copy
the data from the unfiltered channel to the filtered
channel. Separating this step from the actual filtering
makes it easy to concenate filters as is often useful. It
is fairly common, for instance, to concatenate a lowpass
and a notch filter on the same channels. If the unfiltered
data is first copied to the filtered channel, each the
filter can then do its work in place, regardless of whether
it is the first filter in the concatenation or not.

3. Then call subroutines to perform the appropriate recursive
filtering in place. It is normally most flexible to have
the actual filtering done in these subroutines one level
lower rather than directly in subroutine doFilt.

EXAMPLES
A sample set of filter subroutines is in the files
sample.filt.f and sample.filt.com in directory
/user/maine/getData.3.1/source.

CAVEATS
The values in the filtered signal channels of data are not
guaranteed to be retained between calls. If you need to save
an output value between calls, you must save it in a local or
common variable.

The question of what to do when a time dropout is detected
(assuming that you test for such conditions at all) is
complicated. I do not know a simple all-inclusive answer
other than to suggest that the filtered data is likely to be
questionable in the immediate vicinity of a dropout. There
are probably ways of "properly" filtering through dropouts,
but they are likely to be complicated.

ERROR HANDLING
There are no special provisions for error handling.

SEE ALSO
calculations [topic]
allocateFilt, activateFilt [sub]

KEYWORDS
doFilt subroutine,
do/perform/evaluate filtering/filters

AUTHOR Richard Maine - NASA Dryden
VERSION 3.1.1
DATE 8 Sept 86

A.6 File Read Subroutine Help Files

A.6.1 Function OpenR—
openR [sub] -- open a time history file for reading

USAGE
logical = openR(unit,name,nChans)

PARAMETERS
unit: input, I*4
fortran unit number.

name: input, C*(*)
file name.

nChans: output, I*4
number of channels available on the file.

openR: return, L*4
true if open is successful.

DESCRIPTION
Opens a time history data file for reading. This is one of
the time history file interface routines. It must be called
before any other reference to a file by the file interface
read routines. There are several different versions of the
routine for accessing different file formats. The interface
to all versions is identical.

EXAMPLES
integer unit,nChans
logical openR
if (.not.openR(unit,’data’,nChans)) write(*,*) ’open failed.’

CAVEATS
Some versions may support only one time history data file open
for reading at a time.

SEE ALSO
fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite
closeR, rSigs, sigsR, chansR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/1lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR,revR,fRead,fSeek,
time history data file read/access/interface
subroutines/routines,
open a file for read

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.6.2 Subroutine RSigs—
rSigs [sub] -- return list of signal names on time history file

USAGE
call rSigs(unit,sigs)

PARAMETERS
unit: input, I*4
fortran unit number.

sigs: output, C(*)*(*)
List of names of the available signals. This list is in the
order of the channels on the file. It reflects all
available signals, not the currently selected list of
signals to be read.

DESCRIPTION
This is one of the time history interface routines. It
returns a list of the names of the signals available on a
file. The list returned includes all available signals, in
the order of their channel numbers; i.e., it is the list of
signals that would be returned if sigsR or chansR were not
called. Any calls to rSigs must be after openR is called and
before closeR is called for the referenced file. Some
implementations may further restrict rSigs to be illegal after
any calls to fRead or fSeek for the referenced file. To be
compatable with all implementations, you should adhere to this
restriction.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

EXAMPLES
integer unit
character sigs(200)*16
call rSigs(unit,sigs)

SEE ALSO
fileInterface, unci, unc2, cmp2, openW, closeW, fWrite
openR, closeR, sigsR, chansR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,

time history data file read/access/interface

subroutines/routines,
return/get list of available (data channel)/signal names

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.8.3 Subroutine SigsR—
sigsR [sub] -- specify signals to read from time history file

USAGE
call sigsR(unit,sigs,nChans)

PARAMETERS
unit: input, I*4
fortran unit number.

sigs: input, C(*)*(*)
List of names of the signals to be read. The data vector
returned from subsequent calls to fRead or fSeek will
contain values for these signals. A signal name of " "
(blank) indicates that a constant value of 0. is to be
returned to the corresponding location. Signal names may be
repeated in this list to duplicate values to 2 or more
locations in the data vector. Signal names are not case
gensitive.

nChans: input, I*4
Length of the sigs vector; i.e., the number of signals to be
read. Currently limited to a maximum of 1000 (but this
limit can easily be increased as needed).

DESCRIPTION
This is one of the time history interface routines. It
specifies the signals to be read by subsequent calls to fRead
or fSeek. It can be called at any time after the initial call
to openR for a file. It takes effect immediately. This
routine can be called any number of times to change the
signals being read. When a file is opened by openR, it is
initialized to return all of the available channels in
numerical order; this order is in effect until the first call
to chansR or sigsR.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

Signals to be read can alternately be specified by calling
chansR, which is simillar to sigsR, except that chansR finds
signals by channel number instead of by name.

EXAMPLES
integer unit,nChans
character sigs(200)*16
call sigsR(unit,sigs,nChans)

ERROR HANDLING
In most versions, signal names not matching available signals
result in an error message and return the constant value O in
the corresponding data location.

SEE ALSO
fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite
openR, closeR, rSigs, chansR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must

bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR,revR,fRead,fSeek,
time history data file read/access/interface
subroutines/routines,
specify/select (data channels)/signals for read

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.6.4 Subroutine ChansR—
chansR [sub] -- specify channels to read from time history file

USAGE
call chansR(unit,chans,nChans)

PARAMETERS
unit: input, I*4
fortran unit number.

chans: input, I(*)*4
List of the channel numbers to be read. The data vector
returned from subsequent calls to fRead or fSeek will
contain values for these channels. Channel numbers must be
between O and the number of channels available on the file
(as returned by openR). A channel number of O indicates
that a constant value of 0. is to be returned to the
corresponding location. Channel numbers may be repeated in
this list to duplicate values to 2 or more locations in the
data vector.

nChans: input, I*4
Length of the chans vector; i.e., the number of channels to
be read. Currently limited to a maximum of 1000 (but this
limit can easily be increased as needed).

DESCRIPTION
This is one of the time history interface routines. It
specifies the channels to be read by subsequent calls to fRead
or fSeek. It can be called at any time after the initial call
to openR for a file. It takes effect immediately. This
routine can be called any number of times to change the
channels being read. When a file is opened by openR, it is
initialized to return all of the available channels in
numerical order (i.e. chans(i)=i); this order is in effect
until the first call to chansR or sigsR.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

Channels to be read can alternately be specified by calling
sigsR, which is simillar to chansR, except that sigsR finds
channels by name instead of by channel number.

EXAMPLES
integer unit,nChans,chans(200)
call chansR(unit,chans,nChans)

SEE ALSO
fileInterface, unci, unc2, cmp2, openW, closeW, fWrite
openR, closeR, rSigs, sigsR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
time history data file read/access/interface
subroutines/routines,
specify/select (data channels)/signals for read

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.6.5 Subroutine RewR—
revR [sub] -- rewind a time history data file

USAGE
call rewR(unit)

PARAMETERS
unit: input, I*4
fortran unit number.

DESCRIPTION
This is one of the time history interface routines. It
repositions an input time history file so that the next call
to fRead will return the first record of the file. It can be
called at any time after the initial call to openR for a file.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

EXAMPLES
integer unit
call rewR(unit)

SEE ALSO
fileInterface, unci, unc2, cmp2, openW, closeW, fWrite
openR, closeR, rSigs, chansR, sigsR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
time history data file read/access/interface
subroutines/routines,
rewind/reposition a time history file

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.6.6 Function FSeek—
fSeek [sub] -- read a random record from a time history file

USAGE
logical = fSeek(unit,tSeek,time,data)

PARAMETERS
unit: input, I*4
fortran unit number.

tSeek: input, R*8
time requested, seconds.

time: output, R*8
time of the record returned, seconds.

data: output, R(*)*8
data values for this time. The values are in the order
previously specified by calling sigsR or chansR, or in the
default order for the file if neither sigsR nor chansR has
been called.

fSeek: return, L*4
returns true if a record was successfully read. If there
was no data at or after the requested time, then fSeek
returns false. In this event, the values of time and data
are undefined.

DESCRIPTION

This is one of the time history interface routines. It
repositions a time history file to a requested time and
returns a record of data. It can be called at any time after
the initial call to openR for a file. The record returned is
the first record with time greater than or equal to the
requested time. If there is no such record, then fSeek
returns a false value.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

EXAMPLES
integer unit
logical fSeek
double precision tSeek,time,data
if (.not.fSeek(unit,tSeek,time,data)) write(*,*) ’no such time’

CAVEATS
A successful (true) return from fSeek is no guarantee that the

returned time is anywhere near the requested time. It
indicates only that the returned time is later. If the
requested time is before the first available time or is during
a time interval missing from the file, the actual time
returned may be substantially later.

The intent of fSeek is to provide fast random access to the
beginning of a time interval, with subsequent records to be
retrieved by fRead. The implementation varies widely with
different file types. With some file types, it is impractical
to randomly reposition a file. In these cases, fSeek may be
implemented by rewinding and then reading to the desired
record. Therefore, truly random access to individual records
should be avoided; it will work, but may be excruciatingly
slow, depending on the file type.

SEE ALSO
fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite
openR, closeR, rSigs, chansR, sigsR, rewR, fRead

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/1lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
time history data file read/access/interface
subroutines/routines,
read data/(random record) from a time history file,
reposition a time history file

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.6.7 Function FRead—
fRead [sub] -- read next record from a time history file

USAGE
logical = fRead(unit,time,data)

PARAMETERS
unit: input, I*4
fortran unit number.

time: output, R*8
time of the record returned, seconds.

data: output, R(*)#*8
data values for this time. The values are in the order
previously specified by calling sigsR or chansR, or in the
default order for the file if neither sigsR nor chansR has
been called.

fRead: return, Lx*4
returns true if a record was successfully read. If there
wvas no more data to read, then fRead returns false. In this
event, the values of time and data are undefined.

DESCRIPTION
This is one of the time history interface routines. It
returns data from the next sequential record of a time history
data file. It can be called at any time after the initial
call to openR for a file. The initial call to openR
initializes a file to return the first available record.
Records are then returned in sequential order, except as
modified by calls to fRew or fSeek.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

EXAMPLES
integer unit
logical fRead
double precision time,data
if (.not.fRead(unit,time,data)) write(*,*) ’no more data’

SEE ALSO
fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite
openR, closeR, rSigs, chansR, sigsR, rewR, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
time history data file read/access/interface
subroutines/routines,
read data/(next record) from a time history file

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.8.8 Subroutine CloseR—
closeR [sub] -- close a time history data file

USAGE
call closeR(unit)

PARAMETERS
unit: input, I*4
fortran unit number.

DESCRIPTION
This is one of the time history interface routines. It closes
an input time history file. It can be called at any time
after the initial call to openR for a file. If called for a
file that has not been opened, it has no effect. After closeR
has been called, no more time history interface routines can
be called for that unit until openR has been called again. It
is allowed to close a unit with closeR and then re-open the
unit with openR for the same or a different file.

You can usually get by without calling closeR if you will be
making no more calls to the file interface routines. Use of
closeR is advisable, however, and may help avoid conflicts
with other jobs.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

EXAMPLES
integer unit
call closeR(unit)

SEE ALSO
fileInterface, uncl, unc2, cmp2, openW, closeW, fWrite
openR, rSigs, chansR, sigsR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o

The interface subroutines are in the directory
/user/maine/fRead.

The library /user/maine/fRead/auto.o is the most generally
useful one. It automatically recognizes several file formats
and reads them appropriately. It can also handle multiple
files simultaneously opened with different formats.

KEYWORDS
openR,closeR,rSigs,sigsR,chansR.rewR,fRead,fSeek,
time history data file read/access/interface
subroutines/routines,
close a time history file

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.7 File Write Subroutine Help Files

A.7.1 Function Open W—
openW [sub] -- create and open a new time history file

USAGE
logical = openH(unit,name,nChans,sigs,format)

PARAMETERS
unit: input, I*4
fortran unit number.

name: input, C*(*)
file name.

nChans: input, I*4
number of channels to be written on the file. Currently
limited to 1000, but this limit can be easily changed.

sigs: input, C(*)*(*)
List of names of the signals to be written. This list must
be in the same order as the signals will be supplied to
fWrite. There are nChans elements of the list. The signal
names should be left-justified and contain no embedded
blanks or other special characters. The write routines will
work with any signal names, but many programs that access
the files will have trouble parsing their input if the
signal names contain special characters. The names are
case-insensitive, so case can be freely used to enhance
readability. Duplicate signal names will cause problems in
most programs and should be avoided.

format: input, C*(*)
Format to be used for the file. The interpretation of this
parameter depends on the particular write routines. A
particular set of write routines is free, for instance, to
ignore this parameter and write in a single pre-determined
format. Alternatively, a set of write routines supporting a
particular format can verify that the requested format is
the supported one. The auto write routines use this
parameter to determine which of several supported formats to
write.

openW: return, Lx*4
true if open successful.

DESCRIPTION
Creates and opens a new time history data file for writing.
This is one of the time history file interface routines. It
must be called before any other reference to a file by the
file interface write routines. There are several different
versions of the routine for creating different file formats.
The interface to all versions is identical.

EXAMPLES
integer unit,nChans
character sigs(200)*16
logical openW
if (.not. openW(unit,’data’,nChans,sigs,’cmp2’)) then
write (*,*) ’oops’
endif

CAVEATS
Most versions of OpenW attempt to delete any pre-existing file
of the same name in order to avoid conflicting file structure
data. Therefore, you can not use makeFile to override
characteristics of a file about to be written. You can use
file equates for such overrides. Equate specifications
incompatable with the particular routines may cause various
errors.

Poor signal name choices (such as names with embedded or
leading blanks) will cause no problems when writing the file;
it will just make access to those signals difficult for many
programs.

SEE ALSO
fileInterface, uncl, unc2, cmp2, closeW, fWrite
openR, closeR, rSigs, sigsR, chansR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/1lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fWrite. The most commonly used set is
/user/maine/fWrite/auto.o.

KEYWORDS
openW, closeW, fWrite,
time history data file write/interface subroutines/routines,
open a file for write

AUTHOR Richard Maine - NASA Dryden
VERSION 2.1
DATE 12/27/85

A.7.2 Subroutine FWrite—
fWrite [sub] -- write record to a time history file

USAGE
call fWrite(unit,time,data)

PARAMETERS
unit: input, I*4
fortran unit number.

time: input, R*8
time of the record, seconds.

data: input, R(*)x*8
data values for this time. The values must be in the order
specified in the openW call. The number of data values must
agree with the number specified in the call to openW.

DESCRIPTION
This is one of the time history interface routines. It writes

data to the next sequential record of a time history data
file. OpenW must previously have been called to open the file
for writing. Subroutine fWrite is then called repeatedly to
write the records on the file. This must be followed by a
call to closeW to close the file.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

EXAMPLES
integer unit
double precision time,data
call fWrite(unit,time,data)

~VEAT S
The times in successive calls to fWrite are assumed to be in
increasing order. There is no provision for fWrite to sort
the records internally. This should be enforced by the
calling program. The consequences of violating this
limitation may vary widely depending on the particular
implementation. Some implementations may abort. Other
implementations may write a file that can be read
sequentially, but cannot be positioned with fSeek. Some
implementations may even work (but none of the current ones

do).

SEE ALSO
fileInterface, unci, unc2, cmp2, openW, closeW
openR, closeR, rSigs, chansR, sigsR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fWrite. The most commonly used set is
/user/maine/fWrite/auto.o.

KEYWORDS
openW,closeW,fWrite,
time history data file write/interface subroutines/routines,
write data/(next record) to a time history file

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.7.3 Subroutine Close W—
closeW [sub] -- close a time history data file

USAGE
call closeW(unit)

PARAMETERS
unit: input, I*4
fortran unit number.

DESCRIPTION

This is one of the time history interface routines. It closes

an output time history file. It can be called at any time
after the initial call to openW for a file. If called for a

file that has not been opened, it has no effect. After closeW

has been called, no more time history interface routines can
be called for that unit until openR is called to open it for
reading. It is not allowed to re-open the file for writing;
any such attempt will delete the old data and create a new
file.

You must call closeW in order to finish the creation of a time
history file. If closeW is not called, the resulting file may

be missing critical information required for the read routines
to work.

There are several different versions of the routine for
accessing different file formats. The interface to all
versions is identical.

EXAMPLES
integer unit
call closeW(unit)

SEE ALSO
fileInterface, uncl, unc2, cmp2, openW, fWrite
openR, closeR, rSigs, chansR, sigsR, rewR, fRead, fSeek

LIBRARY
Jobs using a particular set of file interface routines must
bind in the library containing the appropriate routines. In
addition, most of the interface libraries use subroutines in
/user/maine/lib/misc.lib.o.

The interface subroutines are in the directory
/user/maine/fWrite. The most commonly used set is
/user/maine/fWrite/auto.o.

KEYWORDS
openW,closeW,fWrite,
time history data file write/interface subroutines/routines,

close a time history file

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/19/85

A.8 File Format Help Files

A.8.1 ASCII 1 Format—
asci [file]l -- ascii 1 file format

DESCRIPTION
This is a simple ascii format intended primarily for transfer
of data tapes between different computers. It is not
recommended for internal Elxsi use because of its
inefficiency, both in file size and access time.

EXAMPLES
A short sample file is in /user/maine/helpFiles/file/ascl.sample.

TAPE SPECIFICATIONS
As the format is primarily aimed at tape data transfer, this
section documents preferred tape characteristics. The format
is not actually limited to tape media.

9-track tape

6250 bpi preferred, 1600 bpi available, limited 800 bpi
capability.

ANSI labeled preferred. Unlabelled available if needed.

ASCII coded data, parity bit is always O.

Fixed length 8000-character blocks. Last block in a file
may be shorter. Other block lengths are available if
needed, subject to the restrictions that the length must
be a multiple of 80 and must be no more than 32720.

RECORD STRUCTURE
The data is organized into fixed length 80-character records.
In most cases, a logical record requires more than 80
characters; the logical record is then split into multiple
80-character records. Any unused fields in a record are
padded with blanks.

HEADER RECORDS
The first several records on a file are header records
describing what signals are on the tape. The first 8
characters of each header record are a tag to identify the
type of data on that record. As currently implemented, these
tags are redundant, because the exact same records are always
written in exactly the same order. The format does allow for
future expansion by the addition of more header records and
programs accessing the files should take this into account; at
a minimum the programs should verify that the header records
found agree with those expected.

All character data in the header records, including the record
type tags and the signal names, should be treated in a
case-insensitive manner on machines that distinguish between
upper and lower case letters. All character data are
left-justified in their fields. Character constant values are
jndicated below in quotations. The quote marks are not
actually part of the data.

A. format record.
The first record of the file identifies the file format. This

makes provision for automatic handling of different formats.
The fortran format of the record is (a8,a8).

Columns Field-Name Field-Format Value
1-8 record-Type a8 constant - ’format’
9-16 file~-format a8 constant - ’asc 1’

B. nChans record.

The second record of the file specifies the number of channels
(signals) contained on the file. The fortran format of the
record is (a8,i8).

Columns Field-Name Field-Format Value
1-8 record-Type a8 constant - ’'nChans’
9-16 nChans i8 variable - number of chans

C. names records.

The 3rd logical record of the file spcifies the names of the
signals on the file. This logical record is continued across
as many physical 80-column records as required. The format of
the continuation records, if any, is slightly different from
that of the initial record. (Fortran naturally handles this
with the format shown here). The fortran format of the
initial record is (a8,8x,4a16), and that of the continuation
records is (5a16); the entire logical record is naturally read
with the fortran format (a8,8x,4a16/(5a16)).

The format allows names up to 16 characters long. Particular
projects are likely to restrict the names actually used to
smaller limits in order to accomodate programs unable to
handle longer names. Note that shorter names are always left
justified in the 16 character fields.

Initial record layout:

Columns Field-Name Field-Format Value

1-8 record-Type a8 constant - ’names’

9-16 unused 8x

17-32 name-1 aié variable - name of sig 1
33-48 name-2 alé variable - name of sig 2
49-64 name-3 alé variable - name of sig 3
65-80 name-4 alé6 variable - name of sig 4

Continuation records contain 5 names each (possibly less on the last
record) in 16-character fields.

D. data0O1l record.

The data001 record indicates the end of the header records.
The purpose of this record is to allow for easy future
expansion of the header records. The preferred way to
position the file at the beginning of the actual data is to
rewind and search for the data00l1 record. Programs using this
method will work unchanged if future additional header records
are defined (assuming that the programs do not need the
information in the new headers).

Columns Field-Name Field-Format Value

1-8 record-Type a8 constant - ’data001’

DATA RECORDS

The remainder of the file, after the header records, consists
of data records. The data for each time consititutes a single
logical data record. This logical record can (and usually
does) span several physical 80-character records.

For each time, there is a single value for every signal on the
file. There is no provision for data compression or for
multi-sample-rate data on a single file. If a signal was
sampled at a higher rate than the sample rate of the file,
then the signal will be thinned. If a signal was sampled at a
lower rate than the sample rate of the file, each sample will
be repeated multiple times on the file. (Note that this is
hold-last-value processing, NOT linear interpolation). If
precise representation of data at multiple sample rates is
needed, then the data at each sample rate must be requested as
a separate file.

Although each file will have a nominal sample rate, it is not
guaranteed to be an absolutely fixed rate. There may be time
dropouts. Also, if the PCM system is not running at exactly
the nominal rate, the processing will follow the PCM system,
not the nominal rate. The time of each record is indicated in
the first field of the record. This time is accurate. Times
implied by assuming exactly constant nominal sample rates are
not guaranteed to be accurate.

All data are in format g20.14, 4 fields to a physical record.
(The time is actually written in format (£10.3,10x), but this
can be read as a g20.14 field with no special fortran
considerations).

The data in the data records are time, followed by the data
values. Time and the first 3 data values are on the first
80-column record of each time point; the following records for
each time point have 4 data values each (possible less on the
last record of a time point). The data values are in the same
order as listed in the names header record.

Time is in floating point seconds past midnight (usually local
time, but this may vary from project to project).

All data values are represented as floating point engineering
units values. The units of measure for each signal are
separately documented. Any integer values (such as digital
words) are converted to floating point for consistency.
Character-valued data is not supported.

POSSIBLE VARIATIONS AND FUTURE PLANS
The 20 character data fields are quite liberal to ensure that
no accuracy will be lost. They do, however, require quite a
bit more tape than smaller field widths. We will consider
requests for formats with smaller fields that use less file
size at the cost of some accuracy. Field widths as small as
10 characters may be acceptable for some applications, but the
accuracy may be marginal (only 4 significant digits can be
guaranteed to fit in a 10 character field with standard
fortran formats). It would make the format considerably more
complicated to mix field lengths in the same file, and we do
not propose to do that.

Future expansion may include the addition of additional header
records giving such data as time skew and units of measure.
Guidelines are given above for how to program in a way
guaranteed to be compatable with such future expansions.

SUBROUTINES
For read access, use /user/maine/fRead/auto.0, which
automatically recognizes this or several other formats. A set
of write routines that handles this and other formats is in
/user/maine/fWrite/auto.o. Both read and write routines are
currently limited to 10 simultaneously open files.

CAVEATS
Current dimensions allow up to 1000 channels per file. This

can be easily changed if required.

SEE ALSO
fileInterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,
openW,closeW,fWrite

KEYWORDS
asci/ascii file format/access,
time history data file read/write/access/interface
subroutines/routines,
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
openW, closeW, fWrite

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1
DATE 1/8/86

A.8.2 Compressed 2 Format—
cmp2 [file] -- compressed file format 2

DESCRIPTION
This is a compressed format. It uses byte-aligned R*4 data to
make access relatively fast and easy. There are header
records describing various aspects of the file and its data.
The format is designed primarily for KAM access, but is
largely compatable with sequential access. Early versions may
be sequential until KAM matures sufficiently.

The cmpl format (now obsolete) is identical to cmp2, except
that cmpl omits the ’data001’ header record.

DATA RECORD FORMAT
time: I*4 -- This is the primary record key. It is scaled
time. The actual time in secs is
timeO+timeScale*(time-keyOffset), where keyOffset, timeO
and timeScale are specified in the header.
recFlags: I*1 -- Record type flags.

Bits 6-7 (1sb) are 00 for a full frame, 01 for a bit-map
compressed frame, or 10 for a channel-list frame. The
value 11 is reserved for future enhancements.

The other 6 bits are currently unused.

chanFlags: Bit(nChans) -- This field is used iff recFlags

is 1. When this field is present, each bit represents a

channel. A 1 means this record has a value for that

channel; 0 means the previous value should be retained.

The field is padded with 0’s to the next byte boundary.

chanList: I(var)*1 -- This field is used iff recFlags is 2.

When the field is present, each byte is an unsigned

channel number, indicating that the record has a data

value for that channel. The list is terminated by a zero
byte.

data: R(nChans)*3 -- Data values. There is one data value
for each channel specified by the chanFlags or chanlist.

Full-frame records have a value for every channel. An

R*3 value is just an R*4 value, with the low-order

byte omitted.

HEADER RECORD FORMATS
Header records have primary keys O<primaryKey<keyOffset,
where keyOffset is specified in the header. They also have
an 8-character descriptive secondary key, which is the
second field of the record. Secondary keys are not required
to be unique.

Key=1,’format’ +req
format: c*8 = ’‘cmp 2’
version: c*8 = ’.1°

Key=100, 'headers’ +req
dummy: I*4 -- currently unused. hardwired to 1000000.
lastHeaderKey: I*4 -- key of the last defined header record.
headerKeySpace: -- key spacing for header records.

Key=200, ’'timeKey’

baseTime,timeScale: R*8 (currently=0.,2%*-12)

keyOffset: I*4 (currently=2#%20)

fullInterval: I*4 -- full frame interval in key units

(currently=10240)
Key=300, 'nChans’ +req
nChans: I*4 -- number of channels
Key=400,410,420,430,’namesl’,’names2’,’namesB’,’names4’ +req
names: C(nChan)*nameLen.

-- These 4 records contain the signal names, spilt into 4
parts. The first 4 characters of each name are in the
’namesi’ record, the second 4 characters of each name are
in ’names2’ record, etc. The names are 16 characters
long. (The strange splitting of the names into
4-character chunks is to prevent this record from
quadrupling the maximum record size needed for the file,
which could adversely impact storage efficiency).

Key=7,?7?’

user-specified data. (unimplemented)

SUBROUTINES
For read access, use /user/maine/fRead/auto.0, which
automatically recognizes this or several other formats. A set
of write routines that handles this and other formats is in
/user/maine/fWrite/auto.o. Both read and write routines are
currently limited to 10 simultaneously open files.

CAVEATS
Current dimensions allow up to 1000 channels per file. This
can be easily changed if required.

SEE ALSO
fileInterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,
openW,closeW,fWrite

IMPLEMENTATION
Currently uses SAM, which makes random access slow. KAM
versions have been tested, but not released for general use.

KEYWORDS
cmp2/cmpl/compressed file format/access,
time history data file read/write/access/interface
subroutines/routines,
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
openW, closeW, sigsW, fWrite

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 11/7/85

A.8.3 List 1 Format—
1is1 [file] -- l1list 1 file format

DESCRIPTION
This is a simple Ascii format intended primarily for listing
to terminal screens or printers. Only writing of this format
is supported; files in this format are intended for human
examination, not input to computer programs. For Ascii file
transfer, use ascl format instead.

This format puts up to 5 data values per line. The data
values are formatted with five digits of precision. Time is
displayed in hours, minutes, seconds and milliseconds.

EXAMPLES
A short sample file is in /user/maine/helpFiles/file/lisl.sample.

SUBROUTINES
A set of of write routines that handles this and other formats
is in /user/maine/fWrite/auto.o. Read access to this format
is not supported.

CAVEATS
Current dimensions allow up to 1000 channels per file. This
can be easily changed if required.

SEE ALSO
fileInterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,
openW,closeW,fWrite

KEYWORDS
1lis1/l1list file format/access,
time history data file read/write/access/interface
subroutines/routines,
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
openW, closeW, fWrite

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1
DATE 1/2/87

A.8.4 Uncompressed 1 Format-—
uncl [file] -- uncompressed file format 1

DESCRIPTION
This is a simple, uncompressed file format. All records are
identical data records; there are no header records. The
first item of each record is time, stored as R*8 seconds.
Each data channel then has an R#4 value (converted to/from Rx8
by the file access routines). This is a relatively close
analog to ’mmle’ format files as used on the CDC. There are
no signal names or associated data.

Support for this format is limited and intended primarily for
compatability with old files. Support may be further limited
in the future. In particular, the automatic file format
recognition may be disabled for this format. (The requirement
to recognize this format degrades the error handling
capabilities of the automatic recognition routines). This
would require the user to bind special routines for reading
this format.

USAGE
Signal names in sigsR and rSigs are taken to be the channel
numbers, converted to left-justified character strings.
Subroutine sigsW does nothing.

SUBROUTINES
Source code for write routines is in /user/maine/fWrite/unci.f.
I am not maintaining object code for writing in this format.
For read access, use /user/maine/fRead/auto.o, which
automatically recognizes this or several other formats.
Source code for a less versatile and efficient, but more
portable, set of read access routines is in
/user/maine/fread.simple.f.

CAVEATS
See the paragraph in the description section warning of the
limited support and possible future changes in the support of
this format.

Current dimensions allow up to 1000 channels per file. This
can be easily changed if required.

SEE ALSO
fileInterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,

openH,closew,erite

IMPLEMENTATION
Straightforward, except for fSeek. The simple version does
fSeek by rewinding and reading until the desired time (slow,
but portable). The Elxsi-specific version operates similarly
unless the records are of fixed-length type (which it
determines by calling an Elxsi file system intrinsic). If the
records are of fixed-length type, fSeek does a fast search for
the start time using random access. The fWrite routines write
fixed-length record types by default.

KEYWORDS
unci/mmle/uncompressed/fixed file format/access,
time history data file read/write/access/interface
subroutines/routines,
openR,closeR,rSigs,sigsR,chansR,rewR,fRead,fSeek,
openW, closeW, sigsW, fWrite

AUTHOR Richard Maine - NASA Dryden
VERSION 1.1
DATE 12/7/84

A.8.5 Uncompressed 2 Format—
unc? [file] -- uncompressed file format 2

DESCRIPTION
This is an uncompressed file format. There are header records
describing various aspects of the file and its data. The file
is designed for efficient access using Elxsi fortran
extensions, which allow intermixed direct and sequential
access. The format is not inherently Elxsi-specific, however.
A fow convolutions in the format are to keep the header
records the same length as the data records in order to allow
simple direct access.

DATA RECORD FORMAT
The first item of each record is time, stored as R*8
seconds. Each data channel then has an R*4 value (converted
to/from R*8 by the file access routines). This is the same
data record format as used in ’uncl’ format files.

HEADER RECORD FORMATS
The first item in each header record is an 8-character
descriptive key. These keys need not be unique. Occurances
of multiple records with the same key mean that the data are
concatenated to give the full fields.

Key=’format’ +req (must be first record)
format: c*8 = 'unc 2 !
version: c*8 = ’.1°
Key=’nChans’ +req (must be second record)
nChans: I*4 -- number of channels
Key=’title’
title: C*(4*nChans) -- file title (’file title’)
Key=’names’ +req (currently hard-wired to recs 4-7)
names: C(nChans)*4 -- channel names.
Key=’times001’ +req

sTime,eTime: R*8 -- interval start and end times
(unimplemented)
sRec,eRec: I*4 -- interval start and end record numbers
(unimplemented)

Key='data001’ +req
iTitle: C*(4*nChans) -- interval title (’interval 1’)
-- This record indicates the start of the data. It must be
the last record in the header portion of the file.

SUBROUTINES
For read access, use /user/maine/fRead/auto.0, which
automatically recognizes this or several other formats. A set
of write routines that handles this and other formats is in
/user/maine/fWrite/auto.o. Both read and write routines are
currently limited to 10 simultaneously open files.

Source code for a less versatile, but more portable set of
read routines is in /user/maine/fRead/unc2.f. Source code for
a portable set of write routines handling only this format is
in /user/maine/fWrite/unc2.f.

CAVEATS
Current dimensions allow up to 1000 channels per file. This
can be easily changed if required.

Current implementation supports only 1 interval per file.

SEE ALSO
fileInterface,openR,closeR,rSigs,sigsR,chansR,rewR,fread,fSeek,
openW,closeW,fWrite

IMPLEMENTATION
Most of the routines are identical to their unci format
counterparts. The only difference is in the treatment of the
header records. (Skipping over them after rewinds, etc.)

FUTURE PLANS
The hard-wired header record numbers should be removed, and
key searches used instead. Also, provision should be made for
other, user-specified header records. Treatment of multiple
intervals in a file should be considered. Start-stop times
and records should be filled in the times records.

KEYWORDS
unc2/uncompressed/fixed file format/access,
time history data file read/write/access/interface
subroutines/routines,
openR,closeR,rSigs,sigsR.chansR,rewR,fRead,fSeek,
openW, closeW, fWrite

AUTHOR Richard Maine - NASA Dryden
VERSION 1.2
DATE 1/8/86

Appendix B—Sample Calculation Routines

B.1 Sample Calculated Function Module

B.1.1 Subroutine AllocateCF1—

subroutine allocateCF1

¢ Richard Maine. 12 Aug 86.
c Locate input and output signals for calculated function.
c Simple sample version for aileron, elevator and keas calculations.

implicit none

CHkookkokk kR ok kok Rk 4ok koK COMMON .
common /CF1/ useDe,useDa,useKeas,iDeR,iDeL,oDe,oDa,iQbar,oKeas
integer iDeR,iDel,oDe,oDa,iQbar,oKeas
logical useDe,useDa,useKeas
save /CF1/

Cxkookiokkokdokkokkkokkkk gxternals.
external labelCalc,sigChan,calcChan,cantCalc
integer sigChan,calcChan

call labelCalc(l,’CF1 sample. Richard Maine 12 Aug 86°)

Cokok ok Rk AokKR kKKK kKR Jocate input signals_
iDeR = sigChan(’der’)
iDeL = sigChan(’del’)
iQbar = sigChan(’qbar’)

CRkxakkkkiokkickkkkkakk allocate calculated signals.
oDe = calcChan(’de’)
oDa = calcChan(’da’)
okeas = calcChan(’keas’)

Chikkkkkkkkkkkkkrirk* disable calculations needing unavailable signals.

cxkkkkkkkkk g@levator and aileron calculations.
if (iDeR.eq.0 .or. iDeL.eq.0) then
call cantCalc(oDe)
call cantCalc(oDa)
endif

cxkkkkkkkkk keas calculation.
if (iQbar.eq.0) call cantCalc(oKeas)

return
end

B.1.2 Subroutine ActivateCF1—
subroutine activateCF1

¢ Richard Maine. 12 Aug 86.
¢ Activate needed calculated functions and their inputs.
¢ Simple sample version for aileron, elevator and keas calculations.

implicit none

Coodkkkok kKRR kkkok Kkokk COMMON .
common /CF1/ useDe,useDa,useKeas,iDeR,iDeL,oDe,oDa,iQbar,oKeas
integer iDeR,iDeL,oDe,oDa,iQbar,oKeas
logical useDe,useDa,useKeas
save /CF1/

Cxaokokookkokaikokokiokiokkkokk @xternals.
external isUsed,setUsed
logical isUsed

Cr=---swmsssscesc-——encooco- executable code ~----==-----c--scocoocooo-oo

cRkkkkkiokkkokkkkkkkkx de and da calculations.
useDe = isUsed(oDe)
useDa = isUsed(oDa)
if (useDe .or. useDa) then
call setUsed(iDeR)
call setUsed(iDeL)
endif

CRdkokkkokiokokkkkkkkiknkk keas calculation.
useKeas = isUsed(oKeas)
if (useKeas) call setUsed(iQbar)

return
end

B.1.3 Subroutine DoCF1—
subroutine doCF1 (time,data,reset)

¢ Richard Maine. 12 Aug 86.
¢ Evaluate calculated functions for getData.
¢ Simple sample version for aileron, elevator and keas calculations.

implicit none

cakokkokok ok kkokkkkk interface.

¢ time(input): time of this frame.

c data(i/o): data vector for both input and output.

¢ reset(input): true on the first point of a time segment.

logical reset
double precision time,data(0:%)

CRRkkkkkRokkkdkkkkkkkk COMMON .
common /CF1/ useDe,useDa,useKeas,iDeR,iDeL,oDe,oDa,inar,oKeas
integer iDeR,iDeL,oDe,oDa,iQbar,oKeas
logical useDe,useDa,useKeas
save /CF1/

€ % 3k ok ok 3k o ok ok 3k ok o ok ok ke o o e ok kK external.
intrinsic sqrt,max

€% ok o o e ok ok ok o ok ok ok ke ok oK ok ke local.
double precision zero
parameter (zero=0.)

cx**xx de is the average of the left and right surfaces.
if (useDe) data(oDe) = .5*(data(iDeR)+data(iDeL))

cxxxxx da is (left-right)/2
if (useDa) data(oDa) = .5*(data(iDeL)-data(iDeR))

cxx*xx% Keas
if (useKeas) data(oKeas) = 17.17*sqrt (max(data(iQbar),zero))

return
end

B.2 Sample Filter Module

B.2.1 Subroutine AllocateFilt—
subroutine allocateFilt (inF,inSig,nIn,maxOut,n0ut)

¢ Richard Maine. 12 Aug 86.
¢ Locate input and output signals for filter.
c Sample version based on x-29.

implicit none
integer input,output
parameter (input=5,output=6)

CcrkmkkiokkkkRkkRkkkk interface.
inF(input): input file number.
inSig(i/o): names of available input signals.
Output names appended on return.
nIn(input): number of available input signals.
maxOut (input) : maximum allowed number of filtered signals.
nOut (output) : number of filtered signals.

0O 0 00 00

integer inF,nIn,maxOut,nOut
character inSig(nIn)x*(x*)

Caokkok kR Rk kok kR kKK COMMON .

integer maxInF,maxIch

parameter (maxInF=10,maxIch=1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU
integer maxFF,maxFCh

parameter (maxFF=2,maxFCh=50)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

1 £Ch(maxFCh,maxFF),fiCh(maxFCh,maxFF) ,fChU(maxFCh,maxFF),
2 f£iChU(maxFCh,maxFF)

save /filtCom/

cRkkkkkikiolokkokkkkkkkk gxternal.
external sIndex
integer sIndex
intrinsic index,len

CAoRkkk ok ok kokkkokk Kook 1ocal .
integer iFilt,i,iChan,iBlank

¢ nFF: number of files with filters.
¢ nFSigs: number of signals in each file with filters defined.
c £Sigs: names of signals with filters defined.

integer nFF,nFSigs (maxFF)

character f£Sigs(maxFCh,maxFF)*16

save nFF,nFSigs,fSigs

data nFF/2/

data nFSigs(1)/21/,(fSigs(i,1),i=1,21)/

1 'al51010’,’aa52001’,’aa52002’,’aab2003’,

2 ’v362002’,’va62004’,’va62005’,’va62006’,’da81001’,’da81002’,
3 ’da81004’,’da81011’,’da81012’,’da81013’,’da81014’,

4 ’da81015’,’da81016’,’da81018’,’da81019’,’da81021’,’da81022’/
data nFSigs(2)/6/,(fSigs(i,2),1=1,6)/

1 ’a151012’,’da81030’,’a151001’,’a151007’,’a151008’,’a151009’/

Chkk Ak dkkkkrkikrrx Find filter number for this file.
Crrnnmkkkkrkkkkkxkkk Based on first filtered signal.
Ckkkkakkkdkkkikkkkkx Implementation allows only 1 filter per file.
do 500 iFilt = 1 , nFF
if (nFSigs(iFilt).gt.0) then
if (sIndex(fSigs(1,iFilt),inSig,nIn).ne.0) goto 900

endif
500 continue
iFilts(inF) = 0
goto 9999
900 iFilts(inF) = iFilt

Chkkkikkkkkkdkkkkkkx find channel numbers of filtered signals.
nFChs(iFilt) = 0
do 2000 i = 1 , nFSigs(iFilt)
iChan = sIndex(fSigs(i,iFilt),inSig,nIn)
if (iChan.eq.0) then
write (output,*) ’*** filter source signal ’,
1 £fSigs(i,iFilt),’ not found. Filter omitted.’
else
if (nOut.ge.maxOut) then
write (output,*) ’#¥* too many filtered signals. ’,
1 ’List truncated’
goto 9999

1

endif

nOut = nOut + 1

nFChs(iFilt) = nOut

fiCh(nOut,iFilt) = iChan

£Ch(nOut,iFilt) = nIn + nOut

iBlank = index(inSig(iChan),’ ’)

if (iBlank.lt.2 .or. iBlank.gt.len(inSig(1))-2)
iBlank = len(inSig(1)) - 2

inSig(nIn+nOut) = inSig(iChan)(1:iBlank-1) // ’-f’

endif
2000 continue
9999 return

end

B.2.2 Subroutine ActivateFili—

subroutine activateFilt (inF,iaOff)

¢ Richard Maine. 9 Sept 86.
¢ Activate needed filters and their inputs.
c Sample version based on x-29.

implicit none

cakskkkikokokokkkkkkkkkkk interface.
c inF(input): input file number.
c iaOff(input): offset of channel numbers into allDat vector.

integer inF,iaOff

Ckkkkikk ik kR Kok kKK COMMON .

integer maxInF,maxIch

parameter (maxInF=10,maxIch=1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU
integer maxFF,maxFCh

parameter (maxFF=2,maxFCh=50)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

1 £Ch(maxFCh,maxFF) ,fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),
2 £iChU(maxFCh,maxFF)

save /filtCom/

chikkkkkkkkkrkkkkkk gxternal.
external isUsed,setUsed
logical isUsed

CHxkokokiokkkkkokkdokkx Jocal.
integer i,iFilt
logical useFilt

iFilt = iFilts(inF)
if (iFilt.ne.0) then

Crokkkkkkkkkkikkkkkankx activate used filters and mark active inputs.
do 1000 i = 1 , nFChs(iFilt)
useFilt = isUsed(iaOff+fCh(i,iFilt))
if (useFilt) call setUsed(iaO0ff+fiCh(i,iFilt))
1000 continue

endif

return

end

B.2.3 Subroutine ReMapFilt—
subroutine reMapFilt (inF,iuMap)

¢ Richard Maine. 2 Sept 86.
¢ Remap filters to compressed locations.
¢ Sample version based on x-29.

implicit none

cadokkokkkokkokkokkkokkkk interface.
¢ inF(input): input file number.
c iuMap(input): map from uncompressed to compressed locations.

integer inF,iuMap(*)

€ 2% %k 2k ok ok ok ok ok ok ok ok ok ok ok ok okok kok ok COMMON .

integer maxInF,maxIch

parameter (maxInF=10,maxIch=1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU
integer maxFF,maxFCh

parameter (maxFF=2,maxFCh=50)

integer iFilts (maxInF) ,nFChs (maxFF) ,nFChsU(maxFF),

1 fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),
2 fiChU(maxFCh,maxFF)

save /filtCom/

Crokkkokokk kiR kkokkkkRkk local.
integer i,iu,iFilt

iFilt = iFilts(inF)
if (iFilt.ne.0) then
in=20
do 1000 i = 1 , nFChs(iFilt)
if (iuMap(fCh(i,iFilt)).ne.0) then
iu=3iu+1
£ChU(iu,iFilt) = iuMap(fCh(i,iFilt))
£iChU(iu,iFilt) = iuMap(fiCh(i,iFilt))
endif
1000 continue
nFChsU(iFilt) = iu
endif
return
end

B.2.4 Subroutine DoFilt—
subroutine doFilt (inF,time,data,reset)

¢ Richard Maine. 12 Aug 86.
¢ calculate filtered data for an input record.
c Sample version based on x-29.

implicit none

o okkkkkdokkkkkkiokkkx interface.

c inF(input): input file number.

c time(input): time of the record.

c data (i/o): data vector for both input and output.

¢ reset(input): forces the filter to be (re)initialized.

integer inF
logical reset
double precision time,data(x)

¢ kokokokdokokskoRkok kKoK Rk kR COMMON .
integer maxInF,maxIch
parameter (maxInF=10,maxIch=1000)
common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU
integer maxFF,maxFCh
parameter (maxFF=2,maxFCh=50)
integer iFilts(maxInF) ,nFChs (maxFF) ,nFChsU(maxFF),
i fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),
2 fiChU(maxFCh,maxFF)
save /filtCom/

cRkoksookkkkokkokkdokokkkkk @xternal.
external low3F,notchF

CakkRkkkkkiokkdokkokkkkk local.
integer i,iFilt

iFilt = iFilts(inF)
if (iFilt.ne.0) then
do 1000 i = 1 , nFChsU(iFilt)
data(£fChU(i,iFilt)) = data(fiChU(i,iFilt))
1000 continue
call low3F(iFilt,time,data,reset)
call notchF(iFilt,time,data,reset)
endif
return
end

B.2.5 Subroutine Low3F—
subroutine low3F (iFilt,aTime,data,reset)

Richard Maine. 12 Aug 86.
3rd order low-pass filter. (Really a concatenated 1st and 2nd order) .

u0,z0 are current in,out; ul,zl previous time; z2 two previous.
y0,y1,y2 are current, previous, and two previous intermediate state.
Sample version based on x-29.

O 0O 0 00

implicit none

CHikkkkkiokkkkkkkkkkx interface.

¢ iFilt(input): filter number.

¢ aTime(input): actual frame time.

¢ data (i/o): data vector for both input and output.
c reset(input): should filter be (re)initialized.

integer iFilt
logical reset
double precision aTime,data(*)

€ ook ok ok ok ok ol okok sk ok ok ok kok ok ko common .

integer maxInF,maxIch

parameter (maxInF=10,maxIch=1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU
integer maxFF,maxFCh

parameter (maxFF=2,maxFCh=50)

integer iFilts(maxInF),nFChs(maxFF),nFChsU(maxFF),

1 fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF),fChU(maxFCh,maxFF),
2 fiChU(maxFCh,maxFF)

save /filtCom/

€ 2% 3k ok o ok o 3k o ok ok e ok 3k ok ok 3k ok K K externals.
intrinsic exp,cos

CrikkkkokkkkRkkkkkkkkk local.
Cm-=== set appropriate break frequency.
double precision freq
parameter (freq=15.)
integer iChan,i
double precision wDt,dt(maxFF),

eat (maxFF),eabt,c1(maxFF),c2(maxFF),gl(maxFF),
g2(maxFF) ,u0i,y0i,z0i,
ui (maxFCh,maxFF),y1(maxFCh,maxFF),y2(maxFCh,maxFF),
z1(maxFCh,maxFF) ,z2(maxFCh,maxFF)

save dt,eat,gl,cl,c2,g2,ul,yl,y2,21,22

w»ow N -

data dt/.005, .01/

CHkkkkkkkdokkkkkdokkkdkk initialize filter at maneuver start.
if (reset) then
cxxxikkkkkx compute filter coefficients.
wDt = freq*xdt(iFilt)*2.%3.14159265
eat(iFilt) = exp(-wDt)
g1(iFilt) = .5%(1.-eat(iFilt))
eabt = exp(-.866025404*uDt)

c1(iFilt) = -2.%eabt*cos(.5%wDt)
c2(iFilt) = eabt*#*2
g2(iFilt) = ,25«(1.+c1(iFilt)+c2(iFilt))

cxkkkkkkkkk jnitialize filter states.
do 2000 i = 1 , nFChsU(iFilt)
u0i = data(fChU(i,iFilt))

ul(i,iFilt) = u0i
y2(i,iFilt) = u0i
y1(i,iFilt) = u0i
z2(i,iFilt) = u0i
z1(i,iFilt) = u0i

2000 continue

CHoksokokokokiorkokokokkkkk filter.
else
do 4000 i = 1 , nFChsU(iFilt)
iChan = fChU(i,iFilt)

u0i = data(iChan)
yoi = eat(iFilt)*y1(i,iFilt) + gl(iFilt)*(uOi+u1(i,iFilt))
z0i = -c1(iFilt)*z1(i,iFilt) - c2(iFilt)=*=z2(i,iFilt)

1 + g2(iFilt)*(yOi+2.*y1(i,iFilt)+y2(i,iFilt))

ui(i,iFilt) = u0i
y2(i,iFilt) = y1(i,iFilt)
y1(i,iFilt) = yOi
z2(i,iFilt) = z1(i,iFilt)
z1(i,iFilt) = z0i
data(iChan) = 20i
4000 continue
endif

9999 return
end

B.2.6 Subroutine NotchF—
subroutine notchF (iFilt,aTime,data,reset)

Richard Maine. 12 Aug 86.

notch filter.

u0,z0 are current in,out; ul,zi previous time; u2,z2 two previous.
Sample version based on x-29.

0o 0 o0 0

implicit none

Cokkakokokokokkakdokkokkokokkokkk interface.

¢ iFilt(input): filter number.

aTime(input): actual frame time.

data (i/o): data vector for both input and output.
reset (input): should filter be (re)initialized.

0o o0 o0

integer iFilt
logical reset
double precision aTime,data(*)

C ok ok ok ok ok ok ok ok okokok ok K okok ok ok common .

integer maxInF,maxIch

parameter (maxInF=10,maxIch=1000)

common /filtCom/ iFilts,nFChs,nFChsU,fCh,fiCh,fChU,fiChU
integer maxFF,maxFCh

parameter (maxFF=2,maxFCh=50)

integer iFilts(maxInF),nFChs(maxFF) ,nFChsU(maxFF),

1 fCh(maxFCh,maxFF),fiCh(maxFCh,maxFF) ,fChU(maxFCh,maxFF),
2 fiChU(maxFCh,maxFF)

save /filtCom/

Coakdokokokojokokokokokokkokokkkkkk @xternals.
intrinsic exp,cos

Gk kkokkkdokkkaokkkaok local.

C==-=- set appropriate break frequency.
double precision freqRad
parameter (freqRad=68.)

integer iChan,i

double precision wDt,wiDt,dt(maxFF),

1 bi(maxFF),c1(maxFF),c2(maxFF),g(maxFF),u0i,=0i,
2 ul(maxFCh,maxFF),u2(maxFCh,maxFF),
3 zi(maxFCh,maxFF),z2(maxFCh,maxFF)

save dt,bl,cl1,c2,g,ul,u2,z1,22

data dt/.005, .01/

xRkl kokkkkxkk initialize filter at maneuver start.
if (reset) then

cHxkxkkkkkkx compute filter coefficients.

wDt = freqRad*dt(iFilt)

b1(iFilt) = -2.*cos(uDt)

wiDt = wDt*.707106781

c1(iFilt) = -2.%exp(-wiDt)*cos(wiDt)

c2(iFilt) = exp(-2.*wiDt)

g(iFilt) = (1.+c1(iFilt)+c2(iFilt))/(2.+b1(iFilt))
cxxxkkkkkkk jnitialize filter states.

do 2000 i = 1 , nFChsU(iFilt)

u0i = data(fChU(i,iFilt))

u2(i,iFilt) = u0i
ul(i,iFilt) = u0i
22(i,iFilt) = u0i
z1(i,iFilt) = u0i

2000 continue

Cookokkkokoriokkokokkokkok filter.
else
do 4000 i = 1 , nFChsU(iFilt)
iChan = fChU(i,iFilt)

u0i = data(iChan)
2z0i = -c1(iFilt)*z1(i,iFilt) - c2(iFilt)*z2(i,iFilt)

1 + g(iFilt)*(u0i + b1(iFilt)*ui1(i,iFilt) + u2(i,iFilt))
u2(i,iFilt) = u1(i,iFilt)
ul(i,iFilt) = u0i
z2(i,iFilt) = z1(i,iFilt)
z1(i,iFilt) = =z0i
data(iChan) = z0i

4000 continue
endif

9999 return
end

References

1. EMBOS User’s Guide, Volume 1, ELXSI, San Jose, California, 1983.

2. American National Standard Programming Language FORTRAN, ANSI X3.9-1978, American Na-
tional Standards Institute, New York, 1978.

Index to User’s and Programmer’s Guides

abbreviations 4
antonym 4

argument
keyword 4
positional 4
switch 4

blanks 4, 15, 16

calculated signals 1, 12, 14-17, 21, 22
case 4, 15, 27, 28

combining data 9

command
copy 6, 7,9, 10, 20
do 18
help 4, 29
list 17
method 9, 13, 16, 22
quit 7, 18
read 6, 9, 12-14
show 17
signals 6, 9, 10, 14, 21
skew 12
write 6, 10, 11, 19

command file 18
comments 3, 18
continuation line 3, 9, 18
delimiters 3

dropouts 8

dt See parameter, dt
filter 12, 22

format 1, 19, 23, 25, 30
frame time 7,9, 11-13, 16

interactive mode 2, 18

interpolation 1, 8, 9, 13, 16, 22, 23
limitations 2, 3, 8, 9, 12, 15, 16, 21, 23
merging 1, 9

multiple files 9, 10

parameter
dt 7
fSkew 12
nTimes 8
thin 7-9, 13

records 7
sample interval 7
sample rate 1, 7, 22

signal name 15
duplicate 9
renaming 9, 16

signal order 10

skew 1, 8, 11, 13, 16, 22, 23
splicing 9, 12

synonyms 4

syntax 3
argument 4
command 3
parameter 4

system dependence 2-5, 7, 18-23, 25, 27
thinning See parameter, thin
time accuracy 8, 11, 13

time segment 1, 6

time skew 11

time tags 7

time tolerance 8

tolerance 8
UNIX 32
VAX 31
VMS 31

i. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM-88288
4. Titie and Subtitle 5. Report Date
October 1987
Manual for GetData Version 3.1—A FORTRAN 6. Pertorming Organization Code
Utility Program for Time History Data
7. Authorls) 8. Performing Organization Report No.
Richard E. Maine H-1403
10. Work Umit No.
9 Performing Crganization Name and Address RTOP 505-61
NASA Ames Research Center 11. Contract or Grant No.
Dryden Flight Research Facility
P.O. Box 273, Edwards, CA 93523-5000
13. Type of Report and Period Covered
12. Sponsoring Agancy Name and Address Technical Memorandum
National Aeronautics and Space Administration TR e y————
Washington, DC 20546
15 Supplementary Notes
Contact author for information on program availability.
16. Abstract

This report documents version 3.1 of the GetData computer program. GetDala is a utility
program for manipulating files of time history data, that is, data giving the values of parameters
as functions of time. The most fundamental capability of GetData is extracting selected signals
and time segments from an input file and writing the selected data to an output file. Other
capabilities include converting file formats, merging data from several input files, time skewing,
interpolating to common output times, and generating calculated output signals as functions of
the input signals.

This report also documents the interface standards for the subroutines used by GetData to
read and write the time history files. All interface to the data files is through these subroutines,
keeping the main body of GetData independent of the precise details of the file formats. Different
file formats can be supported by changes restricted to these subroutines. Other computer
programs conforming to the interface standards can call the same subroutines to read and write
files in compatible formats.

17 Key Words (Suggested by Author(s!) 18. Distribution Statement
Computer program Unclassified — Unlimited
Data processing
Time history data
Subject category 61
19 Security Classif. (of this report) 20. Security Classif. {of this page) 21 No. of Pages 22. Price’

Unclassified Unclassified 145 AO7

*For sale by the National Technical Information Service, Springfield, Virginia 22161.

	Cover Page
	Title Page
	Contents
	Summary
	Introduction
	User's Guide to GetData
	Running GetData
	Entering GetData Commands
	Help Command
	Basic Operation
	Controlling The Output Frame Times
	Merging and Splicing Input Files
	Applying Time Skews
	Interpolating in Time
	Selecting and Defining Signals
	Showing Signal Definitions
	Automating Command Sequences
	 Running System Commands From GetData
	Specifying File Formats

	Programmer's Guide to GetData
	Calculated Function Modules
	Filter Module
	File Interface Modules
	File Formats
	System Dependencies
	Specific Conversions

	Appendix A
	Appendix B
	References
	Index to User's and Programmer's Guide
	Report Documentation Page

